1. (a) Suppose f is continuous on the interval $[0,1]$. Show

$$
\int_{0}^{\pi} x f(\sin (x)) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin (x)) d x .
$$

(b) Let n be a positive integer. Use the formula from (a) to compute the following integral:

$$
\int_{0}^{\pi} \frac{x \sin ^{2 n}(x)}{\sin ^{2 n}(x)+\cos ^{2 n}(x)} d x
$$

2. Let $A=\int_{0}^{\pi} \frac{\cos (x)}{(x+2)^{2}} d x$. Compute the integral

$$
\int_{0}^{\pi / 2} \frac{\sin (x) \cos (x)}{x+1} d x
$$

in terms of A.

