Give a careful proof of the following statement. Use proof by contradiction.
Proposition: For all $n \in \mathbb{Z}, n^{2}+2$ is not divisible by 4 .

Proof: For sake of contradiction, suppose there is some $n \in \mathbb{Z}$ for which $n^{2}+2$ is divisible by 4. Then we can write

$$
n^{2}+2=4 k
$$

for some $k \in \mathbb{Z}$.
First consider the case where $n=2 l$, for some $l \in \mathbb{Z}$. Then

$$
4 k=n^{2}+2=4 l^{2}+2,
$$

and so

$$
4\left(k-l^{2}\right)=2 .
$$

Divide both sides by 2 to get $2\left(k-l^{2}\right)=1$. This is impossible since 1 is not even but the left-hand side is.

Now consider the case where $n=2 l+1$ for some $l \in \mathbb{Z}$. Then

$$
4 k=n^{2}+2=4 l^{2}+4 l+3 .
$$

This gives

$$
4\left(k-l^{2}-l\right)=3
$$

Again, this is a contradiction since 3 is not even. Q.E.D.

