## Math $299 \quad$ Solutions to Problems 23.7 (ii), (iii) Fall 2013

23.7 (ii) We will to prove by contradiction that $\sqrt{5}$ is irrational. So we assume that

$$
\begin{equation*}
\sqrt{5}=p / q \tag{1}
\end{equation*}
$$

where $p, q \in \mathbb{Z}$ are integers, and $q \neq 0$. By canceling common factors, we may suppose that $p$ and $q$ have no prime factors in common. Squaring both sides of (1), and multiplying by $q^{2}$, gives

$$
\begin{equation*}
5 q^{2}=p^{2} \tag{2}
\end{equation*}
$$

This shows that 5 divides $p^{2}$. Since 5 is prime, it must be the case that 5 divides $p$. So we can write

$$
p=5 k
$$

for some $k \in \mathbb{Z}$. Substituting this in (2) gives

$$
5 q^{2}=25 k^{2}
$$

and hence

$$
q^{2}=5 k^{2}
$$

This shows that $q^{2}$ is divisible by 5 . Just as before, this implies that $q$ is divisible by 5 . So we have that $p$ and $q$ are both divisible by 5 . This contradicts the statement that $p$ and $q$ have no common factors.
23.7 (iii) If we tried to repeat the above proof with $\sqrt{4}$ in place of $\sqrt{5}$, the argument would fail. This is because 5 is prime, but 4 is not. For example, it is possible for 4 to divide $p^{2}$, but for 4 not to divide $p$.

