28.6 (iii): Suppose $x=q y+r$, where $x, y, q, r \in \mathbb{Z}$ (you do not need to assume that y does not divide $x)$. We want to prove that $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, r)$. Let $d:=\operatorname{gcd}(x, y)$. This means that d divides x and y. By the relation $r=x-q y$, it follows from Theorem 27.5 that d divides r. So d is a common divisor of y and r, and hence $d \leq \operatorname{gcd}(y, r)$.

Next, we want to prove that d is the greatest integer that divides y and r. For this, we follow Houston's suggestion to prove by contradiction (however, there is a direct approach which also works). Then we assume there is some e which divides y and r, and $d<e$. Then e also divides $x=q y+r$, and so $e \leq \operatorname{gcd}(x, y)=d$, which is a contradiction.

Here is an alternative way to finish the proof after the first paragraph: By definition, $\operatorname{gcd}(y, r)$ divides y and r, so it must divide $x=q y+r$ by Theorem 27.5. This implies $\operatorname{gcd}(y, r) \leq d=\operatorname{gcd}(x, y)$, which proves $\operatorname{gcd}(x, y)=$ $\operatorname{gcd}(y, r)$.
28.19 (i): $\operatorname{gcd}(14592,6468)=12$ and $\operatorname{gcd}(-12870,4914)=234$.

