1. Consider the following axioms regarding inequalities.

A1 For all real numbers $a, b, c$, if $a \leq b$ and $b \leq c$ then $a \leq c$.
A2 For all real numbers $a, b, c$, if $a \leq b$ then $a+c \leq b+c$.
A3 For all real numbers $a, b, c$, if $a \leq b$ and $0 \leq c$ then $a c \leq b c$.
Prove the statements below. Do not assume anything else about inequality $\leq$ except that which appears in A1, A2 and A3. However, you may use any basic facts about equality $=$ that you wish.
(a) For all real numbers $a, b$, if $0 \leq a$ and $a \leq b$ then $a^{2} \leq b^{2}$.
(b) For all real numbers $a$, if $a \leq 0$ then $0 \leq-a$.
(c) For all real numbers $a, b$, if $b \leq a$ and $a \leq 0$, then $a^{2} \leq b^{2}$.
(d) For all real numbers $b, 0 \leq b^{2}$.
(e) For all real numbers $a, b, a b \leq \frac{1}{2}\left(a^{2}+b^{2}\right)$. Hint: Consider $(a-b)^{2}$.
(f) For all real numbers $a, b, \delta$, if $\delta \neq 0$ then $a b \leq \frac{1}{2}\left(\delta^{2} a^{2}+\delta^{-2} b^{2}\right)$.
(g) For all real numbers $a, b, a b=\frac{1}{2}\left(a^{2}+b^{2}\right)$ if and only if $a=b$.
(h) For all non-negative real numbers $a, b, \sqrt{a b} \leq \frac{1}{2}(a+b)$. This is called the arithmetic-geometric mean inequality.
2. Exercise 3.50 (3.36) from the book.
3. For $x \in \mathbb{R}$, define $|x|$ to be $x$ if $x \geq 0$ and $-x$ if $x<0$. Using this definition of the absolute value, prove that if $x+y<0$, then $|x+y| \leq|x|+|y|$.

