- 1. Consider the following axioms regarding inequalities.
 - A1 For all real numbers a, b, c, if $a \leq b$ and $b \leq c$ then $a \leq c$.
 - A2 For all real numbers a, b, c, if $a \leq b$ then $a + c \leq b + c$.
 - A3 For all real numbers a, b, c, if $a \leq b$ and $0 \leq c$ then $ac \leq bc$.

Prove the statements below. Do not assume anything else about *inequality* \leq except that which appears in A1, A2 and A3. However, you may use any basic facts about *equality* = that you wish.

- (a) For all real numbers a, b, if $0 \le a$ and $a \le b$ then $a^2 \le b^2$.
- (b) For all real numbers a, if $a \leq 0$ then $0 \leq -a$.
- (c) For all real numbers a, b, if $b \le a$ and $a \le 0$, then $a^2 \le b^2$.
- (d) For all real numbers $b, 0 \le b^2$.
- (e) For all real numbers $a, b, ab \leq \frac{1}{2}(a^2+b^2)$. *Hint: Consider* $(a-b)^2$.
- (f) For all real numbers a, b, δ , if $\delta \neq 0$ then $ab \leq \frac{1}{2}(\delta^2 a^2 + \delta^{-2}b^2)$.
- (g) For all real numbers $a, b, ab = \frac{1}{2}(a^2 + b^2)$ if and only if a = b.
- (h) For all non-negative real numbers $a, b, \sqrt{ab} \leq \frac{1}{2}(a+b)$. This is called the *arithmetic-geometric mean inequality*.
- 2. Exercise 3.50 (3.36) from the book.
- 3. For $x \in \mathbb{R}$, define |x| to be x if $x \ge 0$ and -x if x < 0. Using this definition of the absolute value, prove that if x + y < 0, then $|x + y| \le |x| + |y|$.