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Inner product

Review: Definition of inner product.

Slide 1 e Norm and distance.

Orthogonal vectors.

Orthogonal complement.

Orthogonal basis.

4 N

Definition of inner product

Definition 1 (Inner product) Let V be a vector space over IR.
An inner product (, ) is a function V- x V — IR with the following
properties

Slide 2 1. Vu eV, (uu) >0, and (u,u) =0 & u=0;
2. Y u, v eV, holds (u,v) = (v,u);

3. Vu, v,weV, andV a, b € IR holds
(au+bv,w) =a(u,w) + b(v,w).

Notation: V together with ( , ) is called an inner product space.
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/ Ezamples \

e The Euclidean inner product in IR?. Let V = IR?, and {e, e}
be the standard basis. Given two arbitrary vectors
X = x1€1 + T2es and Y =y1€e1 + Ya€2, then

(X,¥) = z1y1 + T2y2.

Notice that (e1,e1) =1, (e2,e2) =1, and (e1,e2) = 0. It is

Slide 3 also called “dot product”, and denoted as x - y.
e The Euclidean inner product in IR™. Let V = IR™, and {e;}},
be the standard basis. Given two arbitrary vectors
x=> . xe andy =) .  ye;, then
i=1
k Notice that (e;, e;) = I;; /
Ezamples
e An inner product in the vector space of continuous functions in
[0,1], denoted as V' = C([0, 1)), is defined as follows. Given two
arbitrary vectors f(x) and g(x), introduce the inner product
1
Slide 4 (f.9) = /0 f(@)g(x)da.

e An inner product in the vector space of functions with one
continuous first derivative in [0, 1], denoted as V = C1([0, 1]), is
defined as follows. Given two arbitrary vectors f(z) and g(x),
then

(f,9) = /0 [f(z)g(z) + f(z)g'(2)] de.

N )
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Norm

An inner product space induces a norm, that is, a notion of length
of a vector.

Definition 2 (Norm) Let V, (, ) be a inner product space. The

norm function, or length, is a function V- — IR denoted as || ||, and
defined as

[ull = v/(u, ).
Example:

e The Euclidean norm in IR? is given by

lull = V/(x,%) = /(21)? + (22)*.

Ezxamples

e The Euclidean norm in IR" is given by
lull = V(x,%) = V/(21)? + -+

e A norm in the space of continuous functions V' = C([0, 1]) is

given by
1=/ (f5 ) \/ x)|?dz.

For example, one can check that the length of f(x

+ (2n)?.

=3z is 1.

N )
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Distance

A norm in a vector space, in turns, induces a notion of distance

between two vectors, defined as the length of their difference.

Definition 3 (Distance) Let V, (1, ) be a inner product space,

e The Euclidean distance between to points x and y € IR? is

Ix =yl = V(z1 —y1)% + (22 — 92)? + (w3 — y3)>.

N

and || || be its associated norm. The distance between u and v € V
s giwen by

dist(u,v) = |lu—v||.
Example:

~

)

-

Orthogonal vectors

Theorem 1 Let V' be a vector space and u, v € V. Then,

lutv]=lu=-v] < (av)=0.
Proof:
[+ v[* = (u+v,u+v) = ul* + [|v]]* + 2(u, v).
[u=v[* = (u=v,u—v) = [ul* +[Iv|]* = 2(u, v).
then,

[+ v]* = Ju = v]* = 4(u,v).
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Orthogonal vectors

Definition 4 (Orthogonal vectors) Let V, (, ) be an inner
product space. Two vectors u, v € V are orthogonal, or

perpendicular, if and only if

(u,v) =0.
We call them orthogonal, because the diagonal of the parallelogram
formed by u and v have the same length.

Theorem 2 Let V be a vector space and u, v € V' be orthogonal
vectors. Then

[+ vI* = [lul® + [Iv]*.

N )

4 N

Ezxample
e Vectors u = [1,2]T and v = [2, —1]T in IR? are orthogonal with
the inner product (u,v) = ujv1 + ugva, because,
(u,v)=2-2=0.

e The vectors cos(z), sin(z) € C([0,27]) are orthogonal, with the
inner product (f,g) = fozﬂ fgdz, because

(cos(x),sin(x)) = /0 7Tsin(:z:)cos(ac) dx = %/0 Wsin(Qx) dx,

= —i (cos(Q:E) 3”) =

(cos(z), sin(z))

N )




Math 20F Linear Algebra Lecture 26

-

Orthogonal vectors

Review: Orthogonal vectors.

Slide 11 Orthogonal projection along a vector.

Orthogonal bases.

Orthogonal projection onto a subspace.

e Gram-Schmidt orthogonalization process.

-

Review or orthogonal vectors

Definition 5 (Orthogonal vectors) Let V, (, ) be an inner
product vector space. Two vectors u, v € V are orthogonal, or
perpendicular, if and only if

Slide 12

(u,v) =0.

Theorem 3 Let V, (, ) be an inner product vector space.

u,v € V are orthogonal < |lu+v| = |u—v|,

& Jut v =lul® + [v]*.
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e Fix V,(, ), and u € V, with u # 0.

Can any vector x € V' be decomposed in orthogonal parts with

Orthogonal projection along a vector \

respect to u, that is, x = X + x’ with (x,x’) =0 and x = cu?
Is this decomposition unique?
Theorem 4 (Orthogonal decomposition along a vector)

V,(, ), an inner product vector space, and u € V, with u # 0.

Then, any vector x € V' can be uniquely decomposed as

x =%+,
where
X = (x,uz) u x =x-x
[[u

Therefore, X is proportional to u, and (%,x’) = 0.

N

/ Orthogonal projection along a vector \

Proof: Introduce X = cu, and then write x = cu + x’. The condition
(%,x') = 0 implies that (u,x’) = 0, then

(x,u)
= = =
then
. (x,u) ;L N
X = su, X =x-X
[[ull

This decomposition is unique, because, given a second decomposition
x =y +y withy =du, and (y,y’) =0, then, (u,y’) =0 and

cu+x'=du+y = c=d,

from a multiplication by u, and then,

’ /

X =y.

N )
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Orthogonal bases

Definition 6 Let V,( , ) be an n dimensional inner product vector

space, and {uy,---,u,} be a basis of V.
Slide 15 . .,
The basis is orthogonal < (u;,u;) =0, for all i # j.
The basis is orthonormal < it is orthogonal, and in addition,
lwll =1, for all i,
where i, j =1,---,n.
/ Orthogonal bases \
Theorem 5 Let V,(, ) be an n dimensional inner product vector
space, and {uy,---,u,} be an orthogonal basis. Then, any x € V
can be written as
X =cCc1uy +"'+Cnuna
with the coefficients have the form
Slide 16 (x,u;) .
c; = 5 1:1,-~~,n.
[ |
Proof: The set {u1,---,u,} is a basis, so there exist coeflicients ¢; such
that x = ciu1 + - - - + cpuy. The basis is orthogonal, so multiplying the
expression of x by u;, and recalling (u;, u;) = 0 for all ¢ # j, one gets,
(x,u;) = ¢i(ui, us).

The u; are nonzero, so (u;,w;) = [|[wil|> #0, so ¢; = (x,w)/|lul|*>.

N )
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Notice:

~

Orthogonal projections onto subspaces

To write x in an orthogonal basis means to do an orthogonal
decomposition of x along each basis vector.

(Al this holds for vector spaces of functions.)

Theorem 6 Let V,(, ) be an n dimensional inner product vector

space, and W C V be a p dimensional subspace. Let {uy,---,u,} be

an orthogonal basis of W.

Then, any x € V' can be decomposed as
x=%X+x

with (%X,x') =0 and X = ciuy + - - - + cpu,, where the coefficients c;

are given by

N

(X, ui) .
R TR

’...’p_

)

Gram-Schmidt Orthogonalization process

Orthogonal bases are convenient to carry out computations. Jorgen
Gram and Erhard Schmidt by the year 1900 made standard a
process to compute an orthogonal basis from an arbitrary basis.

(They actually needed it for vector spaces of functions. Laplace, by
1800, used this process on IR™.)

N )
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Gram-Schmidt Orthogonalization process
Theorem 7 Let V,(, ) be an inner product vector space, and
{u1, -+, u,} be an arbitrary basis of V.. Then, an orthogonal basis
of V is given by the vectors {vy,---, vy}, where

Vi = u,
(UQ, Vl)
Va2 = Uz — 5 Vi,
[[vall
(uz, v1) (uz, va)
vy = u3z— V2,
[[val? [[val[?
n—1 (u v )
Vo = Up — Z o 21 Vi
= vl

Least-squares approximation

e Review: Gram-Schmidt orthogonalization process.

e Least-squares approximation.
— Definition.
— Normal equation.

— Examples.

10
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Gram-Schmidt Orthogonalization process

Theorem 8 Let V,(, ) be an inner product vector space, and

{u1, -+, u,} be an arbitrary basis of V.. Then, an orthogonal basis
of V is given by the vectors {vy,---, vy}, where
Vi = u,
(UQ, Vl)
Va2 = Uz — 5 Vi,
[[vall
(u?)) Vl) (u?)) V2)
V3 = ug— Vo
[[val? [val® 7
-1
_ X (unvvl)
Vn, = U, — Z > Vi
= vl

Least-squares approximation

Let V., W be vector spaces and A : V — W be linear. Given b € W
then the linear equation Ax = b either has a solution x or it has no

solutions.

Suppose now that there is an inner product in W, say (, )w, with

associated norm

| [lw. Then there exists a notion of approximate

solution, given as follows.

N )
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Definition 7 (Approximate solution) Let V., W be vector
spaces and let (, )w, || [lw be an inner product and its associate
norm in W. Let A:V — W be linear, and b € W be an arbitrary
vector. An approximate solution to the linear equation

Ax = b,
is a vector X € V such that

|A% — bllw < ||Ax — b|lw, V.x€V.

Remark: x is also called least-squares approximation, because X makes
the number

A% — bty = [(Ax)1 — bi]* + - + [(AX)m — b

Kas small as possible, where m = dim(W). /

4 N

Least-squares approximation

Theorem 9 Let V, W be vector spaces and let ( , Yw, || |lw be an
inner product and its associate norm in W. Let A:V — W be

linear, and b € W be an arbitrary vector.

If x € V satisfies that
(AX —b) L Range(A),

then X is a least-squares solution of Ax = b.

N )

/ Least-squares approximation \
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Least-squares approximation

Proof: The hypothesis (Ax —b) L Range(A) implies that for all
x € V holds

Ax—b = Ax—b+ Ax — Ax,
= (A% —b)+ A(x —%).

The two terms on the right hand side are orthogonal, by
hypothesis, then Pythagoras theorem holds, so

| Ax = b|[fy, = [[A% = b[§y + [|A(x - %)[[§y > [ A% - blly,

S0 X is a least-squares solution.

N

~

-

Least-squares approximation

Theorem 10 Let R", (, )n, and R™, (, )m be the Euclidean
inner product spaces and A : IR™ — IR™ be linear, identified with

an m X n matriz. Fizb € IR™. Then,
% € R" is solution of AT Ax = ATb & (A%x—b) L Col(A).
Proof: Let % such that AT Ax = ATb. Then,
ATAx=A"b, & AT(Ax—Db) =0, & (a;, (AX — b)), =0,

for all a; column vector of A, where we used the notation

N

A=[ay,---,a,]. Therefore, the condition AT A% = ATb is equivalent to
(Ax —b) L Col(A). O

~

)
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Least-squares approximation

The previous two results can be summarized in the following one:

Theorem 11 Let R™, (, )n, and R™, (, )m be the Euclidean
inner product spaces and A : IR™ — IR™ be linear, identified with
an m X n matriz. Fizb e R™.

If x € R™ is solution of ATA%Xx = ATb, then X is a least squares
solution of Ax = b.

N
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