Inner product

- Review: Definition of inner product.

Slide 1

- Norm and distance.
- Orthogonal vectors.
- Orthogonal complement.
- Orthogonal basis.

Definition of inner product

Definition 1 (Inner product) Let V be a vector space over \mathbb{R}. An inner product (,) is a function $V \times V \rightarrow \mathbb{R}$ with the following properties
Slide 2

1. $\forall \mathbf{u} \in V,(\mathbf{u}, \mathbf{u}) \geq 0$, and $(\mathbf{u}, \mathbf{u})=0 \Leftrightarrow \mathbf{u}=\mathbf{0}$;
2. $\forall \mathbf{u}, \mathbf{v} \in V$, holds $(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u})$;
3. $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, and $\forall a, b \in \mathbb{R}$ holds $(a \mathbf{u}+b \mathbf{v}, \mathbf{w})=a(\mathbf{u}, \mathbf{w})+b(\mathbf{v}, \mathbf{w})$.

Notation: V together with $($,$) is called an inner product space.$

Examples

- The Euclidean inner product in \mathbb{R}^{2}. Let $V=\mathbb{R}^{2}$, and $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ be the standard basis. Given two arbitrary vectors $\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}$ and $\mathbf{y}=y_{1} \mathbf{e}_{1}+y_{2} \mathbf{e}_{2}$, then

$$
(\mathbf{x}, \mathbf{y})=x_{1} y_{1}+x_{2} y_{2} .
$$

Notice that $\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=1,\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=1$, and $\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=0$. It is also called "dot product", and denoted as $\mathbf{x} \cdot \mathbf{y}$.

- The Euclidean inner product in \mathbb{R}^{n}. Let $V=\mathbb{R}^{n}$, and $\left\{\mathbf{e}_{i}\right\}_{i=1}^{n}$ be the standard basis. Given two arbitrary vectors $\mathbf{x}=\sum_{i=1}^{n} x_{i} \mathbf{e}_{i}$ and $\mathbf{y}=\sum_{i=1}^{n} y_{i} \mathbf{e}_{i}$, then

$$
(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n} x_{i} y_{i}
$$

Notice that $\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)=I_{i j}$

Examples

- An inner product in the vector space of continuous functions in $[0,1]$, denoted as $V=C([0,1])$, is defined as follows. Given two arbitrary vectors $f(x)$ and $g(x)$, introduce the inner product

$$
(f, g)=\int_{0}^{1} f(x) g(x) d x
$$

- An inner product in the vector space of functions with one continuous first derivative in $[0,1]$, denoted as $V=C^{1}([0,1])$, is defined as follows. Given two arbitrary vectors $f(x)$ and $g(x)$, then

$$
(f, g)=\int_{0}^{1}\left[f(x) g(x)+f^{\prime}(x) g^{\prime}(x)\right] d x
$$

Norm

An inner product space induces a norm, that is, a notion of length of a vector.

Definition 2 (Norm) Let V, (,) be a inner product space. The norm function, or length, is a function $V \rightarrow \mathbb{R}$ denoted as $\|\|$, and defined as

$$
\|\mathbf{u}\|=\sqrt{(\mathbf{u}, \mathbf{u})}
$$

Example:

- The Euclidean norm in \mathbb{R}^{2} is given by

$$
\|\mathbf{u}\|=\sqrt{(\mathbf{x}, \mathbf{x})}=\sqrt{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}}
$$

Examples

- The Euclidean norm in \mathbb{R}^{n} is given by

$$
\|\mathbf{u}\|=\sqrt{(\mathbf{x}, \mathbf{x})}=\sqrt{\left(x_{1}\right)^{2}+\cdots+\left(x_{n}\right)^{2}}
$$

Slide 6

- A norm in the space of continuous functions $V=C([0,1])$ is given by

$$
\|f\|=\sqrt{(f, f)}=\sqrt{\int_{0}^{1}[f(x)]^{2} d x}
$$

For example, one can check that the length of $f(x)=\sqrt{3} x$ is 1 .

Distance

A norm in a vector space, in turns, induces a notion of distance between two vectors, defined as the length of their difference.

Definition 3 (Distance) Let V, (,) be a inner product space, and $\|\|$ be its associated norm. The distance between \mathbf{u} and $\mathbf{v} \in V$ is given by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

Example:

- The Euclidean distance between to points \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{3}$ is

$$
\|\mathbf{x}-\mathbf{y}\|=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}} .
$$

Orthogonal vectors

Theorem 1 Let V be a vector space and $\mathbf{u}, \mathbf{v} \in V$. Then,

$$
\|\mathbf{u}+\mathbf{v}\|=\|\mathbf{u}-\mathbf{v}\| \quad \Leftrightarrow \quad(\mathbf{u}, \mathbf{v})=0
$$

Slide 8
Proof:

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2} & =(\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v})=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2(\mathbf{u}, \mathbf{v}) \\
\|\mathbf{u}-\mathbf{v}\|^{2} & =(\mathbf{u}-\mathbf{v}, \mathbf{u}-\mathbf{v})=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2(\mathbf{u}, \mathbf{v})
\end{aligned}
$$

then,

$$
\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}-\mathbf{v}\|^{2}=4(\mathbf{u}, \mathbf{v}) .
$$

Orthogonal vectors

Definition 4 (Orthogonal vectors) Let V, (,) be an inner product space. Two vectors $\mathbf{u}, \mathbf{v} \in V$ are orthogonal, or perpendicular, if and only if

Slide 9

Example

- Vectors $\mathbf{u}=[1,2]^{T}$ and $\mathbf{v}=[2,-1]^{T}$ in \mathbb{R}^{2} are orthogonal with the inner product $(\mathbf{u}, \mathbf{v})=u_{1} v_{1}+u_{2} v_{2}$, because,

$$
(\mathbf{u}, \mathbf{v})=2-2=0
$$

Slide 10

- The vectors $\cos (x), \sin (x) \in C([0,2 \pi])$ are orthogonal, with the inner product $(f, g)=\int_{0}^{2 \pi} f g d x$, because

$$
\begin{gathered}
(\cos (x), \sin (x))=\int_{0}^{2 \pi} \sin (x) \cos (x) d x=\frac{1}{2} \int_{0}^{2 \pi} \sin (2 x) d x \\
(\cos (x), \sin (x))=-\frac{1}{4}\left(\left.\cos (2 x)\right|_{0} ^{2 \pi}\right)=0
\end{gathered}
$$

Orthogonal vectors

- Review: Orthogonal vectors.

Slide 11

- Orthogonal projection along a vector.
- Orthogonal bases.
- Orthogonal projection onto a subspace.
- Gram-Schmidt orthogonalization process.

Review or orthogonal vectors

Definition 5 (Orthogonal vectors) Let V, (,) be an inner product vector space. Two vectors $\mathbf{u}, \mathbf{v} \in V$ are orthogonal, or perpendicular, if and only if

$$
(\mathbf{u}, \mathbf{v})=0 .
$$

Theorem 3 Let V, (,) be an inner product vector space.

$$
\begin{aligned}
\mathbf{u}, \mathbf{v} \in V \text { are orthogonal } & \Leftrightarrow\|\mathbf{u}+\mathbf{v}\|=\|\mathbf{u}-\mathbf{v}\| \\
& \Leftrightarrow\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2} .
\end{aligned}
$$

Orthogonal projection along a vector

- Fix $V,($,$) , and \mathbf{u} \in V$, with $\mathbf{u} \neq \mathbf{0}$.

Can any vector $\mathbf{x} \in V$ be decomposed in orthogonal parts with respect to \mathbf{u}, that is, $\mathbf{x}=\hat{\mathbf{x}}+\mathbf{x}^{\prime}$ with $\left(\hat{\mathbf{x}}, \mathbf{x}^{\prime}\right)=0$ and $\hat{\mathbf{x}}=c \mathbf{u}$?
Is this decomposition unique?
Slide 13

Orthogonal projection along a vector

Proof: Introduce $\hat{\mathbf{x}}=c \mathbf{u}$, and then write $\mathbf{x}=c \mathbf{u}+\mathbf{x}^{\prime}$. The condition $\left(\hat{\mathbf{x}}, \mathbf{x}^{\prime}\right)=0$ implies that $\left(\mathbf{u}, \mathbf{x}^{\prime}\right)=0$, then

$$
(\mathbf{x}, \mathbf{u})=c(\mathbf{u}, \mathbf{u}), \quad \Rightarrow \quad c=\frac{(\mathbf{x}, \mathbf{u})}{\|\mathbf{u}\|^{2}}
$$

then

$$
\hat{\mathbf{x}}=\frac{(\mathbf{x}, \mathbf{u})}{\|\mathbf{u}\|^{2}} \mathbf{u}, \quad \mathbf{x}^{\prime}=\mathbf{x}-\hat{\mathbf{x}} .
$$

This decomposition is unique, because, given a second decomposition $\mathbf{x}=\hat{\mathbf{y}}+\mathbf{y}^{\prime}$ with $\mathbf{y}=d \mathbf{u}$, and $\left(\hat{\mathbf{y}}, \mathbf{y}^{\prime}\right)=0$, then, $\left(\mathbf{u}, \mathbf{y}^{\prime}\right)=0$ and

$$
c \mathbf{u}+\mathbf{x}^{\prime}=d \mathbf{u}+\mathbf{y}^{\prime} \quad \Rightarrow \quad c=d
$$

from a multiplication by \mathbf{u}, and then,

$$
\mathrm{x}^{\prime}=\mathrm{y}^{\prime}
$$

Orthogonal bases

Definition 6 Let V, (,) be an n dimensional inner product vector space, and $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ be a basis of V.
Slide 15
The basis is orthogonal $\Leftrightarrow \quad\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)=0$, for all $i \neq j$.
The basis is orthonormal $\Leftrightarrow \quad$ it is orthogonal, and in addition, $\left\|\mathbf{u}_{i}\right\|=1$, for all i,
where $i, j=1, \cdots, n$.

Orthogonal bases

Theorem 5 Let V, (,) be an n dimensional inner product vector space, and $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ be an orthogonal basis. Then, any $\mathbf{x} \in V$ can be written as

$$
\mathbf{x}=c_{1} \mathbf{u}_{1}+\cdots+c_{n} \mathbf{u}_{n}
$$

with the coefficients have the form
Slide 16

$$
c_{i}=\frac{\left(\mathbf{x}, \mathbf{u}_{i}\right)}{\left\|\mathbf{u}_{i}\right\|^{2}}, \quad i=1, \cdots, n
$$

Proof: The set $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ is a basis, so there exist coefficients c_{i} such that $\mathbf{x}=c_{1} \mathbf{u}_{1}+\cdots+c_{n} \mathbf{u}_{n}$. The basis is orthogonal, so multiplying the expression of \mathbf{x} by \mathbf{u}_{i}, and recalling $\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)=0$ for all $i \neq j$, one gets,

$$
\left(\mathbf{x}, \mathbf{u}_{i}\right)=c_{i}\left(\mathbf{u}_{i}, \mathbf{u}_{i}\right) .
$$

The \mathbf{u}_{i} are nonzero, so $\left(\mathbf{u}_{i}, \mathbf{u}_{i}\right)=\left\|\mathbf{u}_{i}\right\|^{2} \neq 0$, so $c_{i}=\left(\mathbf{x}, \mathbf{u}_{i}\right) /\left\|\mathbf{u}_{i}\right\|^{2}$.

Notice:
To write \mathbf{x} in an orthogonal basis means to do an orthogonal decomposition of \mathbf{x} along each basis vector.
(All this holds for vector spaces of functions.)
Theorem 6 Let V, (,) be an n dimensional inner product vector
Slide 17 space, and $W \subset V$ be a p dimensional subspace. Let $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}\right\}$ be an orthogonal basis of W.

Then, any $\mathbf{x} \in V$ can be decomposed as

$$
\mathbf{x}=\hat{\mathbf{x}}+\mathrm{x}^{\prime}
$$

with $\left(\hat{\mathbf{x}}, \mathbf{x}^{\prime}\right)=0$ and $\hat{\mathbf{x}}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}$, where the coefficients c_{i} are given by

$$
c_{i}=\frac{\left(\mathbf{x}, \mathbf{u}_{i}\right)}{\left\|\mathbf{u}_{i}\right\|^{2}}, \quad i=1, \cdots, p
$$

Gram-Schmidt Orthogonalization process

Orthogonal bases are convenient to carry out computations. Jorgen
Slide 18 Gram and Erhard Schmidt by the year 1900 made standard a process to compute an orthogonal basis from an arbitrary basis.
(They actually needed it for vector spaces of functions. Laplace, by 1800 , used this process on \mathbb{R}^{n}.)

Gram-Schmidt Orthogonalization process

Theorem 7 Let V, (,) be an inner product vector space, and $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ be an arbitrary basis of V. Then, an orthogonal basis of V is given by the vectors $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$, where

$$
\begin{aligned}
\mathbf{v}_{1}= & \mathbf{u}_{1} \\
\mathbf{v}_{2}= & \mathbf{u}_{2}-\frac{\left(\mathbf{u}_{2}, \mathbf{v}_{1}\right)}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1} \\
\mathbf{v}_{3}= & \mathbf{u}_{3}-\frac{\left(\mathbf{u}_{3}, \mathbf{v}_{1}\right)}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\left(\mathbf{u}_{3}, \mathbf{v}_{2}\right)}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2} \\
\vdots & \vdots \\
\mathbf{v}_{n}= & \mathbf{u}_{n}-\sum_{i=1}^{n-1} \frac{\left(\mathbf{u}_{n}, \mathbf{v}_{i}\right)}{\left\|\mathbf{v}_{i}\right\|^{2}} \mathbf{v}_{i}
\end{aligned}
$$

Least-squares approximation

- Review: Gram-Schmidt orthogonalization process.

Slide 20

- Least-squares approximation.
- Definition.
- Normal equation.
- Examples.

Gram-Schmidt Orthogonalization process

Theorem 8 Let V, (,) be an inner product vector space, and $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ be an arbitrary basis of V. Then, an orthogonal basis of V is given by the vectors $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$, where

$$
\begin{aligned}
\mathbf{v}_{1}= & \mathbf{u}_{1} \\
\mathbf{v}_{2}= & \mathbf{u}_{2}-\frac{\left(\mathbf{u}_{2}, \mathbf{v}_{1}\right)}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1} \\
\mathbf{v}_{3}= & \mathbf{u}_{3}-\frac{\left(\mathbf{u}_{3}, \mathbf{v}_{1}\right)}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\left(\mathbf{u}_{3}, \mathbf{v}_{2}\right)}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2} \\
\vdots & \vdots \\
\mathbf{v}_{n}= & \mathbf{u}_{n}-\sum_{i=1}^{n-1} \frac{\left(\mathbf{u}_{n}, \mathbf{v}_{i}\right)}{\left\|\mathbf{v}_{i}\right\|^{2}} \mathbf{v}_{i}
\end{aligned}
$$

Least-squares approximation

Let V, W be vector spaces and $A: V \rightarrow W$ be linear. Given $\mathbf{b} \in W$
Slide 22 then the linear equation $A \mathbf{x}=\mathbf{b}$ either has a solution \mathbf{x} or it has no solutions.

Suppose now that there is an inner product in W, say $(,)_{W}$, with associated norm $\left\|\|_{W}\right.$. Then there exists a notion of approximate solution, given as follows.

Least-squares approximation

Definition 7 (Approximate solution) Let V, W be vector spaces and let $(,)_{W},\| \|_{W}$ be an inner product and its associate norm in W. Let $A: V \rightarrow W$ be linear, and $\mathbf{b} \in W$ be an arbitrary vector. An approximate solution to the linear equation

$$
A \mathbf{x}=\mathbf{b}
$$

Slide 23
is a vector $\hat{\mathbf{x}} \in V$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\|_{W} \leq\|A \mathbf{x}-\mathbf{b}\|_{W}, \quad \forall, \mathbf{x} \in V
$$

Remark: $\hat{\mathbf{x}}$ is also called least-squares approximation, because $\hat{\mathbf{x}}$ makes the number

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\|_{W}^{2}=\left[(A \mathbf{x})_{1}-b_{1}\right]^{2}+\cdots+\left[(A \mathbf{x})_{m}-b_{m}\right]^{2}
$$

as small as possible, where $m=\operatorname{dim}(W)$.

Least-squares approximation

Theorem 9 Let V, W be vector spaces and let (,) $W_{W},\| \|_{W}$ be an inner product and its associate norm in W. Let $A: V \rightarrow W$ be
Slide 24 linear, and $\mathbf{b} \in W$ be an arbitrary vector. If $\hat{\mathbf{x}} \in V$ satisfies that

$$
(A \hat{\mathbf{x}}-\mathbf{b}) \perp \operatorname{Range}(A)
$$

then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$.

Least-squares approximation

Proof: The hypothesis $(A \hat{\mathbf{x}}-\mathbf{b}) \perp \operatorname{Range}(A)$ implies that for all $\mathrm{x} \in V$ holds

$$
\begin{aligned}
A \mathbf{x}-\mathbf{b} & =A \hat{\mathbf{x}}-\mathbf{b}+A \mathbf{x}-A \hat{\mathbf{x}} \\
& =(A \hat{\mathbf{x}}-\mathbf{b})+A(\mathbf{x}-\hat{\mathbf{x}})
\end{aligned}
$$

The two terms on the right hand side are orthogonal, by hypothesis, then Pythagoras theorem holds, so

$$
\|A \mathbf{x}-\mathbf{b}\|_{W}^{2}=\|A \hat{\mathbf{x}}-\mathbf{b}\|_{W}^{2}+\|A(\mathbf{x}-\hat{\mathbf{x}})\|_{W}^{2} \geq\|A \hat{\mathbf{x}}-\mathbf{b}\|_{W}^{2}
$$

so $\hat{\mathbf{x}}$ is a least-squares solution.

Least-squares approximation

Theorem 10 Let $\mathbb{R}^{n},(,)_{n}$, and $\mathbb{R}^{m},(,)_{m}$ be the Euclidean inner product spaces and $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear, identified with an $m \times n$ matrix. Fix $\mathbf{b} \in \mathbb{R}^{m}$. Then,

Slide 26

$$
\hat{\mathbf{x}} \in \mathbb{R}^{n} \text { is solution of } A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b} \Leftrightarrow(A \hat{\mathbf{x}}-\mathbf{b}) \perp \operatorname{Col}(A)
$$

Proof: Let $\hat{\mathbf{x}}$ such that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then,

$$
A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}, \Leftrightarrow A^{T}(A \hat{\mathbf{x}}-\mathbf{b})=0, \Leftrightarrow\left(\mathbf{a}_{i},(A \hat{\mathbf{x}}-\mathbf{b})\right)_{m}=0
$$

for all \mathbf{a}_{i} column vector of A, where we used the notation $A=\left[\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right]$. Therefore, the condition $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ is equivalent to $(A \hat{\mathbf{x}}-\mathbf{b}) \perp \operatorname{Col}(A)$.

Least-squares approximation

The previous two results can be summarized in the following one:
Slide 27
Theorem 11 Let $\mathbb{R}^{n},(,)_{n}$, and $\mathbb{R}^{m},(,)_{m}$ be the Euclidean inner product spaces and $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear, identified with an $m \times n$ matrix. Fix $\mathbf{b} \in \mathbb{R}^{m}$.

If $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ is solution of $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$, then $\hat{\mathbf{x}}$ is a least squares solution of $A \mathbf{x}=\mathbf{b}$.

