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Inner product

• Review: Definition of inner product.

• Norm and distance.

• Orthogonal vectors.

• Orthogonal complement.

• Orthogonal basis.
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Definition of inner product

Definition 1 (Inner product) Let V be a vector space over IR.

An inner product ( , ) is a function V × V → IR with the following

properties

1. ∀u ∈ V , (u,u) ≥ 0, and (u,u) = 0 ⇔ u = 0;

2. ∀ u, v ∈ V , holds (u,v) = (v,u);

3. ∀ u, v, w ∈ V , and ∀ a, b ∈ IR holds

(au + bv,w) = a(u,w) + b(v,w).

Notation: V together with ( , ) is called an inner product space.
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Examples

• The Euclidean inner product in IR2. Let V = IR2, and {e1, e2}
be the standard basis. Given two arbitrary vectors

x = x1e1 + x2e2 and y = y1e1 + y2e2, then

(x,y) = x1y1 + x2y2.

Notice that (e1, e1) = 1, (e2, e2) = 1, and (e1, e2) = 0. It is

also called “dot product”, and denoted as x · y.

• The Euclidean inner product in IRn. Let V = IRn, and {ei}ni=1

be the standard basis. Given two arbitrary vectors

x =
∑n

i=1 xiei and y =
∑n

i=1 yiei, then

(x,y) =

n∑

i=1

xiyi.

Notice that (ei, ej) = Iij
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Examples

• An inner product in the vector space of continuous functions in

[0, 1], denoted as V = C([0, 1]), is defined as follows. Given two

arbitrary vectors f(x) and g(x), introduce the inner product

(f, g) =

∫ 1

0

f(x)g(x) dx.

• An inner product in the vector space of functions with one

continuous first derivative in [0, 1], denoted as V = C1([0, 1]), is

defined as follows. Given two arbitrary vectors f(x) and g(x),

then

(f, g) =

∫ 1

0

[f(x)g(x) + f ′(x)g′(x)] dx.
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Norm

An inner product space induces a norm, that is, a notion of length

of a vector.

Definition 2 (Norm) Let V , ( , ) be a inner product space. The

norm function, or length, is a function V → IR denoted as ‖ ‖, and

defined as

‖u‖ =
√

(u,u).

Example:

• The Euclidean norm in IR2 is given by

‖u‖ =
√

(x,x) =
√

(x1)2 + (x2)2.
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Examples

• The Euclidean norm in IRn is given by

‖u‖ =
√

(x,x) =
√

(x1)2 + · · ·+ (xn)2.

• A norm in the space of continuous functions V = C([0, 1]) is

given by

‖f‖ =
√

(f, f) =

√∫ 1

0

[f(x)]2dx.

For example, one can check that the length of f(x) =
√

3x is 1.
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Distance

A norm in a vector space, in turns, induces a notion of distance

between two vectors, defined as the length of their difference.

Definition 3 (Distance) Let V , ( , ) be a inner product space,

and ‖ ‖ be its associated norm. The distance between u and v ∈ V
is given by

dist(u,v) = ‖u− v‖.

Example:

• The Euclidean distance between to points x and y ∈ IR3 is

‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.
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Orthogonal vectors

Theorem 1 Let V be a vector space and u, v ∈ V . Then,

‖u + v‖ = ‖u− v‖ ⇔ (u,v) = 0.

Proof:

‖u + v‖2 = (u + v,u + v) = ‖u‖2 + ‖v‖2 + 2(u,v).

‖u− v‖2 = (u− v,u− v) = ‖u‖2 + ‖v‖2 − 2(u,v).

then,

‖u + v‖2 − ‖u − v‖2 = 4(u,v).
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Orthogonal vectors

Definition 4 (Orthogonal vectors) Let V , ( , ) be an inner

product space. Two vectors u, v ∈ V are orthogonal, or

perpendicular, if and only if

(u,v) = 0.

We call them orthogonal, because the diagonal of the parallelogram

formed by u and v have the same length.

Theorem 2 Let V be a vector space and u, v ∈ V be orthogonal

vectors. Then

‖u + v‖2 = ‖u‖2 + ‖v‖2.
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Example

• Vectors u = [1, 2]T and v = [2,−1]T in IR2 are orthogonal with

the inner product (u,v) = u1v1 + u2v2, because,

(u,v) = 2− 2 = 0.

• The vectors cos(x), sin(x) ∈ C([0, 2π]) are orthogonal, with the

inner product (f, g) =
∫ 2π

0 fg dx, because

(cos(x), sin(x)) =

∫ 2π

0

sin(x) cos(x) dx =
1

2

∫ 2π

0

sin(2x) dx,

(cos(x), sin(x)) = −1

4

(
cos(2x)|2π0

)
= 0.
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Orthogonal vectors

• Review: Orthogonal vectors.

• Orthogonal projection along a vector.

• Orthogonal bases.

• Orthogonal projection onto a subspace.

• Gram-Schmidt orthogonalization process.
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Review or orthogonal vectors

Definition 5 (Orthogonal vectors) Let V , ( , ) be an inner

product vector space. Two vectors u, v ∈ V are orthogonal, or

perpendicular, if and only if

(u,v) = 0.

Theorem 3 Let V , ( , ) be an inner product vector space.

u,v ∈ V are orthogonal ⇔ ‖u + v‖ = ‖u− v‖,
⇔ ‖u + v‖2 = ‖u‖2 + ‖v‖2.
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Orthogonal projection along a vector

• Fix V, ( , ), and u ∈ V , with u 6= 0.

Can any vector x ∈ V be decomposed in orthogonal parts with

respect to u, that is, x = x̂ + x′ with (x̂,x′) = 0 and x̂ = cu?

Is this decomposition unique?

Theorem 4 (Orthogonal decomposition along a vector)

V, ( , ), an inner product vector space, and u ∈ V , with u 6= 0.

Then, any vector x ∈ V can be uniquely decomposed as

x = x̂ + x′,

where

x̂ =
(x,u)

‖u‖2 u, x′ = x− x̂.

Therefore, x̂ is proportional to u, and (x̂,x′) = 0.
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Orthogonal projection along a vector

Proof: Introduce x̂ = cu, and then write x = cu + x′. The condition

(x̂,x′) = 0 implies that (u,x′) = 0, then

(x,u) = c(u,u), ⇒ c =
(x,u)

‖u‖2 ,

then

x̂ =
(x,u)

‖u‖2 u, x′ = x− x̂.

This decomposition is unique, because, given a second decomposition

x = ŷ + y′ with y = du, and (ŷ,y′) = 0, then, (u,y′) = 0 and

cu + x′ = du + y′ ⇒ c = d,

from a multiplication by u, and then,

x′ = y′.
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Orthogonal bases

Definition 6 Let V, ( , ) be an n dimensional inner product vector

space, and {u1, · · · ,un} be a basis of V .

The basis is orthogonal ⇔ (ui,uj) = 0, for all i 6= j.

The basis is orthonormal ⇔ it is orthogonal, and in addition,

‖ui‖ = 1, for all i,

where i, j = 1, · · · , n.
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Orthogonal bases

Theorem 5 Let V, ( , ) be an n dimensional inner product vector

space, and {u1, · · · ,un} be an orthogonal basis. Then, any x ∈ V
can be written as

x = c1u1 + · · ·+ cnun,

with the coefficients have the form

ci =
(x,ui)

‖ui‖2
, i = 1, · · · , n.

Proof: The set {u1, · · · ,un} is a basis, so there exist coefficients ci such

that x = c1u1 + · · ·+ cnun. The basis is orthogonal, so multiplying the

expression of x by ui, and recalling (ui,uj) = 0 for all i 6= j, one gets,

(x,ui) = ci(ui,ui).

The ui are nonzero, so (ui,ui) = ‖ui‖2 6= 0, so ci = (x,ui)/‖ui‖2.
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Orthogonal projections onto subspaces

Notice:

To write x in an orthogonal basis means to do an orthogonal

decomposition of x along each basis vector.

(All this holds for vector spaces of functions.)

Theorem 6 Let V, ( , ) be an n dimensional inner product vector

space, and W ⊂ V be a p dimensional subspace. Let {u1, · · · ,up} be

an orthogonal basis of W .

Then, any x ∈ V can be decomposed as

x = x̂ + x′

with (x̂,x′) = 0 and x̂ = c1u1 + · · ·+ cpup, where the coefficients ci
are given by

ci =
(x,ui)

‖ui‖2
, i = 1, · · · , p.
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Gram-Schmidt Orthogonalization process

Orthogonal bases are convenient to carry out computations. Jorgen

Gram and Erhard Schmidt by the year 1900 made standard a

process to compute an orthogonal basis from an arbitrary basis.

(They actually needed it for vector spaces of functions. Laplace, by

1800, used this process on IRn.)
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Gram-Schmidt Orthogonalization process

Theorem 7 Let V, ( , ) be an inner product vector space, and

{u1, · · · ,un} be an arbitrary basis of V . Then, an orthogonal basis

of V is given by the vectors {v1, · · · ,vn}, where

v1 = u1,

v2 = u2 −
(u2,v1)

‖v1‖2
v1,

v3 = u3 −
(u3,v1)

‖v1‖2
v1 −

(u3,v2)

‖v2‖2
v2,

...
...

vn = un −
n−1∑

i=1

(un,vi)

‖vi‖2
vi.
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Least-squares approximation

• Review: Gram-Schmidt orthogonalization process.

• Least-squares approximation.

– Definition.

– Normal equation.

– Examples.
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Gram-Schmidt Orthogonalization process

Theorem 8 Let V, ( , ) be an inner product vector space, and

{u1, · · · ,un} be an arbitrary basis of V . Then, an orthogonal basis

of V is given by the vectors {v1, · · · ,vn}, where

v1 = u1,

v2 = u2 −
(u2,v1)

‖v1‖2
v1,

v3 = u3 −
(u3,v1)

‖v1‖2
v1 −

(u3,v2)

‖v2‖2
v2,

...
...

vn = un −
n−1∑

i=1

(un,vi)

‖vi‖2
vi.
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Least-squares approximation

Let V , W be vector spaces and A : V →W be linear. Given b ∈ W
then the linear equation Ax = b either has a solution x or it has no

solutions.

Suppose now that there is an inner product in W , say ( , )W , with

associated norm ‖ ‖W . Then there exists a notion of approximate

solution, given as follows.
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Least-squares approximation

Definition 7 (Approximate solution) Let V , W be vector

spaces and let ( , )W , ‖ ‖W be an inner product and its associate

norm in W . Let A : V →W be linear, and b ∈ W be an arbitrary

vector. An approximate solution to the linear equation

Ax = b,

is a vector x̂ ∈ V such that

‖Ax̂− b‖W ≤ ‖Ax− b‖W , ∀,x ∈ V.

Remark: x̂ is also called least-squares approximation, because x̂ makes

the number

‖Ax̂− b‖2W = [(Ax)1 − b1]2 + · · · + [(Ax)m − bm]2

as small as possible, where m = dim(W ).
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Least-squares approximation

Theorem 9 Let V , W be vector spaces and let ( , )W , ‖ ‖W be an

inner product and its associate norm in W . Let A : V →W be

linear, and b ∈W be an arbitrary vector.

If x̂ ∈ V satisfies that

(Ax̂− b) ⊥ Range(A),

then x̂ is a least-squares solution of Ax = b.
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Least-squares approximation

Proof: The hypothesis (Ax̂− b) ⊥ Range(A) implies that for all

x ∈ V holds

Ax − b = Ax̂− b +Ax−Ax̂,

= (Ax̂ − b) +A(x − x̂).

The two terms on the right hand side are orthogonal, by

hypothesis, then Pythagoras theorem holds, so

‖Ax− b‖2W = ‖Ax̂− b‖2W + ‖A(x− x̂)‖2W ≥ ‖Ax̂− b‖2W ,

so x̂ is a least-squares solution.
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Least-squares approximation

Theorem 10 Let IRn, ( , )n, and IRm, ( , )m be the Euclidean

inner product spaces and A : IRn → IRm be linear, identified with

an m× n matrix. Fix b ∈ IRm. Then,

x̂ ∈ IRn is solution of ATAx̂ = ATb ⇔ (Ax̂− b) ⊥ Col(A).

Proof: Let x̂ such that ATAx̂ = ATb. Then,

ATAx̂ = ATb, ⇔ AT (Ax̂− b) = 0, ⇔ (ai, (Ax̂− b))m = 0,

for all ai column vector of A, where we used the notation

A = [a1, · · · , an]. Therefore, the condition ATAx̂ = ATb is equivalent to

(Ax̂− b) ⊥ Col(A).
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Least-squares approximation

The previous two results can be summarized in the following one:

Theorem 11 Let IRn, ( , )n, and IRm, ( , )m be the Euclidean

inner product spaces and A : IRn → IRm be linear, identified with

an m× n matrix. Fix b ∈ IRm.

If x̂ ∈ IRn is solution of ATAx̂ = ATb, then x̂ is a least squares

solution of Ax = b.


