

A primer on differential equations.

Partial derivatives of $f: D \subset \mathbb{R}^2 \to \mathbb{R}$

Definition

The partial derivative with respect to x at a point $(x, y) \in D$ of a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ with values f(x, y) is given by

$$f_{x}(x,y) = \lim_{h\to 0} \frac{1}{h} \big[f(x+h,y) - f(x,y) \big].$$

The partial derivative with respect to y at a point $(x, y) \in D$ of a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ with values f(x, y) is given by

$$f_y(x,y) = \lim_{h\to 0} \frac{1}{h} [f(x,y+h) - f(x,y)].$$

Remark:

- To compute $f_x(x, y)$ derivate f(x, y) keeping y constant.
- To compute $f_y(x, y)$ derivate f(x, y) keeping x constant.

Partial derivatives of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ Remark: To compute $f_x(x, y)$ at (x_0, y_0) : (a) Evaluate the function f at $y = y_0$. The result is a single variable function $\hat{f}(x) = f(x, y_0)$. (b) Compute the derivative of \hat{f} and evaluate it at $x = x_0$. (c) The result is $f_x(x_0, y_0)$. Example Find $f_x(1, 3)$ for $f(x, y) = x^2 + y^2/4$. Solution: (a) $f(x, 3) = x^2 + 9/4$; (b) $f_x(x, 3) = 2x$; (c) $f_x(1, 3) = 2$. \lhd Remark: To compute $f_x(x, y)$ derivate f(x, y) keeping y constant.

Partial derivatives of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ Remark: To compute $f_y(x, y)$ at (x_0, y_0) : (a) Evaluate the function f at $x = x_0$. The result is a single variable function $\tilde{f}(y) = f(x_0, y)$. (b) Compute the derivative of \tilde{f} and evaluate it at $y = y_0$. (c) The result is $f_y(x_0, y_0)$. Example Find $f_y(1,3)$ for $f(x, y) = x^2 + y^2/4$. Solution: (a) $f(1, y) = 1 + y^2/4$; (b) $f_y(1, y) = y/2$; (c) $f_y(1, 3) = 3/2$.

Geometrical meaning of partial derivatives

Remark: $f_x(x_0, y_0)$ is the slope of the line tangent to the graph of f(x, y) containing the point $(x_0, y_0, f(x_0, y_0))$ and belonging to a plane parallel to the *zx*-plane.

Remark: $f_y(x_0, y_0)$ is the slope of the line tangent to the graph of f(x, y) containing the point $(x_0, y_0, f(x_0, y_0))$ and belonging to a plane parallel to the *zy*-plane.

The derivative of a function is a new function

Example

Find the partial derivatives of $f(x, y) = \frac{2x - y}{x + 2y}$.

Solution:

$$f_x(x,y) = \frac{2(x+2y)-(2x-y)}{(x+2y)^2} \quad \Rightarrow \quad f_x(x,y) = \frac{5y}{(x+2y)^2}.$$

$$f_{y}(x,y) = \frac{(-1)(x+2y) - (2x-y)(2)}{(x+2y)^{2}} \Rightarrow f_{y}(x,y) = -\frac{5x}{(x+2y)^{2}}.$$

The partial derivatives of a function are new functions

Definition

Given a function $f : D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$, the *functions partial derivatives of f* are denoted by f_x and f_y , and they are given by

$$f_{x}(x,y) = \lim_{h \to 0} \frac{1}{h} \left[f(x+h,y) - f(x,y) \right],$$

$$f_{y}(x,y) = \lim_{h \to 0} \frac{1}{h} \left[f(x,y+h) - f(x,y) \right].$$

Notation: Partial derivatives of f are denoted in several ways:

$$f_x(x,y), \qquad rac{\partial f}{\partial x}(x,y), \qquad \partial_x f(x,y).$$

 $f_y(x,y), \qquad rac{\partial f}{\partial y}(x,y), \qquad \partial_y f(x,y).$

The partial derivatives of a function are new functions

Example

Find the partial derivatives of $f(x, y) = x^2 \ln(y)$.

Solution:

$$f_x(x,y) = 2x \ln(y), \qquad f_y(x,y) = \frac{x^2}{y}.$$

 \triangleleft

Example

Find the partial derivatives of $f(x, y) = x^2 + \frac{y^2}{4}$.

Solution:

$$f_x(x,y) = 2x, \qquad f_y(x,y) = \frac{y}{2}$$

 \triangleleft

Higher-order partial derivatives

Remark: Higher derivatives of a function are partial derivatives of its partial derivatives. The second partial derivatives of f(x, y) are:

$$f_{xx}(x, y) = \lim_{h \to 0} \frac{1}{h} [f_x(x+h, y) - f_x(x, y)],$$

$$f_{yy}(x, y) = \lim_{h \to 0} \frac{1}{h} [f_y(x, y+h) - f_y(x, y)],$$

$$f_{xy}(x, y) = \lim_{h \to 0} \frac{1}{h} [f_x(x, y+h) - f_x(x, y)],$$

$$f_{yx}(x, y) = \lim_{h \to 0} \frac{1}{h} [f_y(x+h, y) - f_y(x, y)].$$

Notation: f_{xx} , $\frac{\partial^2 f}{\partial x^2}$, $\partial_{xx} f$, and f_{xy} , $\frac{\partial^2 f}{\partial x \partial y}$, $\partial_{xy} f$.

Higher-order partial derivatives. Example Find all second order derivatives of the function $f(x, y) = x^3 e^{2y} + 3y$. Solution: $f_x(x, y) = 3x^2 e^{2y}, \quad f_y(x, y) = 2x^3 e^{2y} + 3$. $f_{xx}(x, y) = 6xe^{2y}, \quad f_{yy}(x, y) = 4x^3 e^{2y}$. $f_{xy} = 6x^2 e^{2y}, \quad f_{yx} = 6x^2 e^{2y}$.

 \triangleleft

Partial derivatives and differentiability (Sect. 14.3). Partial derivatives of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$. Geometrical meaning of partial derivatives. The derivative of a function is a new function. Higher-order partial derivatives. **The Mixed Derivative Theorem.** Examples of implicit partial differentiation. Partial derivatives of $f : D \subset \mathbb{R}^n \to \mathbb{R}$.

Partial derivatives and differentiability (Sect. 14.3)

- Partial derivatives of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$.
- Geometrical meaning of partial derivatives.
- ► The derivative of a function is a new function.
- Higher-order partial derivatives.
- ► The Mixed Derivative Theorem.
- **•** Examples of implicit partial differentiation.
- Partial derivatives of $f : D \subset \mathbb{R}^n \to \mathbb{R}$.

Examples of implicit partial differentiation

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_x z(x, y)$ of the function z defined implicitly by the equation $xyz + e^{2z/y} + \cos(z) = 0.$

Solution: Compute the x-derivative on both sides of the equation,

$$yz + xy(\partial_x z) + \frac{2}{y}(\partial_x z)e^{2z/y} - (\partial_x z)\sin(z) = 0.$$

Compute $\partial_x z$ as a function of x, y and z(x, y), as follows,

$$(\partial_x z)[xy+\frac{2}{y}e^{2z/y}-\sin(z)]=-yz.$$

We obtain: $(\partial_x z) = -\frac{yz}{[xy + \frac{2}{v}e^{2z/y} - \sin(z)]}.$

Examples of implicit partial differentiation

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_y z(x, y)$ of the function z defined implicitly by the equation $xyz + e^{2z/y} + \cos(z) = 0.$

Solution: Compute the y-derivative on both sides of the equation,

$$xz + xy(\partial_y z) + \left(\frac{2}{y}(\partial_y z) - \frac{2}{y^2}z\right)e^{2z/y} - (\partial_y z)\sin(z) = 0.$$

Compute $\partial_y z$ as a function of x, y and z(x, y), as follows,

$$(\partial_y z) \left[xy + \frac{2}{y} e^{2z/y} - \sin(z) \right] = -xz + \frac{2}{y^2} z e^{2z/y},$$
$$\left[-xz + \frac{2}{z} z e^{2z/y} \right]$$

We obtain: $(\partial_y z) = \frac{\left[-xz + \frac{1}{y^2}z \, e^{-yz}\right]}{\left[xy + \frac{2}{y} \, e^{2z/y} - \sin(z)\right]}.$

 \triangleleft

 \triangleleft

Partial derivatives of $f: D \subset \mathbb{R}^n \to \mathbb{R}$

Definition The *partial derivative with respect to* x_i at a point $(x_1, \dots, x_n) \in D$ of a function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$ and $i = 1, \dots, n$, is given by

$$f_{x_i} = \lim_{h \to 0} \frac{1}{h} \big[f(x_1, \cdots, x_i + h, \cdots, x_n) - f(x_1, \cdots, x_n) \big].$$

Remark: To compute f_{x_i} derivate f with respect to x_i keeping all other variables x_j constant.

Notation:
$$f_{x_i}$$
, f_i , $\frac{\partial f}{\partial x_i}$, $\partial_{x_i} f$, $\partial_i f$.

Partial derivatives of $f : D \subset \mathbb{R}^n \to \mathbb{R}$

Example

Compute all first partial derivatives of the function $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$

Solution:

$$\phi_x = -\frac{1}{2} \frac{2x}{(x^2 + y^2 + z^2)^{3/2}} \quad \Rightarrow \quad \phi_x = -\frac{x}{(x^2 + y^2 + z^2)^{3/2}}.$$

Analogously, the other partial derivatives are given by

$$\phi_{y} = -\frac{y}{(x^{2} + y^{2} + z^{2})^{3/2}}, \qquad \phi_{z} = -\frac{z}{(x^{2} + y^{2} + z^{2})^{3/2}}.$$

Partial derivatives of $f : D \subset \mathbb{R}^n \to \mathbb{R}$ Example Verify that $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ satisfies the Laplace equation: $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$. Solution: Recall: $\phi_x = -x/(x^2 + y^2 + z^2)^{3/2}$. Then, $\phi_{xx} = -\frac{1}{(x^2 + y^2 + z^2)^{3/2}} + \frac{3}{2} \frac{2x^2}{(x^2 + y^2 + z^2)^{5/2}}$. Denote $r = \sqrt{x^2 + y^2 + z^2}$, then $\phi_{xx} = -\frac{1}{r^3} + \frac{3x^2}{r^5}$. Analogously, $\phi_{yy} = -\frac{1}{r^3} + \frac{3y^2}{r^5}$, and $\phi_{zz} = -\frac{1}{r^3} + \frac{3z^2}{r^5}$. Then, $\phi_{xx} + \phi_{yy} + \phi_{zz} = -\frac{3}{r^3} + \frac{3(x^2 + y^2 + z^2)}{r^5} = -\frac{3}{r^3} + \frac{3r^2}{r^5}$. We conclude that $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$.

 \triangleleft