Partial derivatives and differentiability (Sect. 14.3)

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Geometrical meaning of partial derivatives.
- The derivative of a function is a new function.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Next class:

- Partial derivatives and continuity.
- Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Differentiability and continuity.
- A primer on differential equations.

Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$

Definition

The partial derivative with respect to x at a point $(x, y) \in D$ of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ with values $f(x, y)$ is given by

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h, y)-f(x, y)] .
$$

The partial derivative with respect to y at a point $(x, y) \in D$ of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ with values $f(x, y)$ is given by

$$
f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}[f(x, y+h)-f(x, y)] .
$$

Remark:

- To compute $f_{x}(x, y)$ derivate $f(x, y)$ keeping y constant.
- To compute $f_{y}(x, y)$ derivate $f(x, y)$ keeping x constant.

Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$

Remark: To compute $f_{x}(x, y)$ at $\left(x_{0}, y_{0}\right)$:
(a) Evaluate the function f at $y=y_{0}$. The result is a single variable function $\hat{f}(x)=f\left(x, y_{0}\right)$.
(b) Compute the derivative of \hat{f} and evaluate it at $x=x_{0}$.
(c) The result is $f_{x}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{x}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.
Solution:
(a) $f(x, 3)=x^{2}+9 / 4$;
(b) $f_{x}(x, 3)=2 x$;
(c) $f_{x}(1,3)=2$.

Remark: To compute $f_{x}(x, y)$ derivate $f(x, y)$ keeping y constant.

Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$

Remark: To compute $f_{y}(x, y)$ at $\left(x_{0}, y_{0}\right)$:
(a) Evaluate the function f at $x=x_{0}$. The result is a single variable function $\tilde{f}(y)=f\left(x_{0}, y\right)$.
(b) Compute the derivative of \tilde{f} and evaluate it at $y=y_{0}$.
(c) The result is $f_{y}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{y}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.

Solution:

(a) $f(1, y)=1+y^{2} / 4$;
(b) $f_{y}(1, y)=y / 2$;
(c) $f_{y}(1,3)=3 / 2$.

Remark: To compute $f_{y}(x, y)$ derivate $f(x, y)$ keeping x constant.

Partial derivatives and differentiability (Sect. 14.3)

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Geometrical meaning of partial derivatives.
- The derivative of a function is a new function.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Geometrical meaning of partial derivatives

Remark: $f_{x}\left(x_{0}, y_{0}\right)$ is the slope of the line tangent to the graph of $f(x, y)$ containing the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ and belonging to a plane parallel to the $z x$-plane.

Remark: $f_{y}\left(x_{0}, y_{0}\right)$ is the slope of the line tangent to the graph of $f(x, y)$ containing the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ and belonging to a plane parallel to the $z y$-plane.

Partial derivatives and differentiability (Sect. 14.3)

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Geometrical meaning of partial derivatives.
- The derivative of a function is a new function.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

The derivative of a function is a new function

Example

Find the partial derivatives of $f(x, y)=\frac{2 x-y}{x+2 y}$.
Solution:

$$
\begin{gathered}
f_{x}(x, y)=\frac{2(x+2 y)-(2 x-y)}{(x+2 y)^{2}} \Rightarrow f_{x}(x, y)=\frac{5 y}{(x+2 y)^{2}} . \\
f_{y}(x, y)=\frac{(-1)(x+2 y)-(2 x-y)(2)}{(x+2 y)^{2}} \Rightarrow f_{y}(x, y)=-\frac{5 x}{(x+2 y)^{2}} .
\end{gathered}
$$

Recall: The derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is itself a function.

Example

The derivative of function $f(x)=x^{2}$ at an arbitrary point x is the function $f^{\prime}(x)=2 x$.

Remark: The same statement is true for partial derivatives.

The partial derivatives of a function are new functions

Definition

Given a function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$, the functions partial derivatives of f are denoted by f_{x} and f_{y}, and they are given by

$$
\begin{aligned}
f_{x}(x, y) & =\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h, y)-f(x, y)] \\
f_{y}(x, y) & =\lim _{h \rightarrow 0} \frac{1}{h}[f(x, y+h)-f(x, y)]
\end{aligned}
$$

Notation: Partial derivatives of f are denoted in several ways:

$$
\begin{array}{lll}
f_{x}(x, y), & \frac{\partial f}{\partial x}(x, y), & \partial_{x} f(x, y) . \\
f_{y}(x, y), & \frac{\partial f}{\partial y}(x, y), & \partial_{y} f(x, y) .
\end{array}
$$

The partial derivatives of a function are new functions
Remark: The partial derivatives of a paraboloid are planes.

Example

Find the functions partial derivatives of $f(x, y)=x^{2}+y^{2}$.
Solution:
$f_{x}(x, y)=2 x+0 \quad \Rightarrow \quad f_{x}(x, y)=2 x$.
$f_{y}(x, y)=0+2 y \quad \Rightarrow \quad f_{y}(x, y)=2 y$.
Remark: The partial derivatives of a paraboloid are planes. \triangleleft

The partial derivatives of a function are new functions

Example

Find the partial derivatives of $f(x, y)=x^{2} \ln (y)$.
Solution:

$$
f_{x}(x, y)=2 x \ln (y), \quad f_{y}(x, y)=\frac{x^{2}}{y}
$$

Example

Find the partial derivatives of $f(x, y)=x^{2}+\frac{y^{2}}{4}$.
Solution:

$$
f_{x}(x, y)=2 x, \quad f_{y}(x, y)=\frac{y}{2} .
$$

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Geometrical meaning of partial derivatives.
- The derivative of a function is a new function.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Higher-order partial derivatives

Remark: Higher derivatives of a function are partial derivatives of its partial derivatives. The second partial derivatives of $f(x, y)$ are:

$$
\begin{aligned}
& f_{x x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{x}(x+h, y)-f_{x}(x, y)\right], \\
& f_{y y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{y}(x, y+h)-f_{y}(x, y)\right], \\
& f_{x y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{x}(x, y+h)-f_{x}(x, y)\right], \\
& f_{y x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{y}(x+h, y)-f_{y}(x, y)\right] .
\end{aligned}
$$

Notation: $f_{x x}, \quad \frac{\partial^{2} f}{\partial x^{2}}, \quad \partial_{x x} f$, and $f_{x y}, \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \partial_{x y} f$.

Higher-order partial derivatives.

Example

Find all second order derivatives of the function
$f(x, y)=x^{3} e^{2 y}+3 y$.
Solution:

$$
\begin{gathered}
f_{x}(x, y)=3 x^{2} e^{2 y}, \quad f_{y}(x, y)=2 x^{3} e^{2 y}+3 \\
f_{x x}(x, y)=6 x e^{2 y}, \quad f_{y y}(x, y)=4 x^{3} e^{2 y} \\
f_{x y}=6 x^{2} e^{2 y}, \quad f_{y x}=6 x^{2} e^{2 y}
\end{gathered}
$$

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Geometrical meaning of partial derivatives.
- The derivative of a function is a new function.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

The Mixed Derivative Theorem

Remark: Higher-order partial derivatives sometimes commute.

Theorem

If the partial derivatives $f_{x}, f_{y}, f_{x y}$ and $f_{y x}$ of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ exist and all are continuous functions, then holds

$$
f_{x y}=f_{y x}
$$

Example

Find $f_{x y}$ and $f_{y x}$ for $f(x, y)=\cos (x y)$.

Solution:

$$
\begin{array}{ll}
f_{x}=-y \sin (x y), & f_{x y}=-\sin (x y)-y x \cos (x y) . \\
f_{y}=-x \sin (x y), & f_{y x}=-\sin (x y)-x y \cos (x y) .
\end{array}
$$

Partial derivatives and differentiability (Sect. 14.3)

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Geometrical meaning of partial derivatives.
- The derivative of a function is a new function.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Examples of implicit partial differentiation

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_{x} z(x, y)$ of the function z defined implicitly by the equation $x y z+e^{2 z / y}+\cos (z)=0$.

Solution: Compute the x-derivative on both sides of the equation,

$$
y z+x y\left(\partial_{x} z\right)+\frac{2}{y}\left(\partial_{x} z\right) e^{2 z / y}-\left(\partial_{x} z\right) \sin (z)=0
$$

Compute $\partial_{x} z$ as a function of x, y and $z(x, y)$, as follows,

$$
\left(\partial_{x} z\right)\left[x y+\frac{2}{y} e^{2 z / y}-\sin (z)\right]=-y z
$$

We obtain: $\quad\left(\partial_{x} z\right)=-\frac{y z}{\left[x y+\frac{2}{y} e^{2 z / y}-\sin (z)\right]}$.

Examples of implicit partial differentiation

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_{y} z(x, y)$ of the function z defined implicitly by the equation $x y z+e^{2 z / y}+\cos (z)=0$.

Solution: Compute the y-derivative on both sides of the equation,

$$
x z+x y\left(\partial_{y} z\right)+\left(\frac{2}{y}\left(\partial_{y} z\right)-\frac{2}{y^{2}} z\right) e^{2 z / y}-\left(\partial_{y} z\right) \sin (z)=0 .
$$

Compute $\partial_{y} z$ as a function of x, y and $z(x, y)$, as follows,

$$
\left(\partial_{y} z\right)\left[x y+\frac{2}{y} e^{2 z / y}-\sin (z)\right]=-x z+\frac{2}{y^{2}} z e^{2 z / y}
$$

We obtain: $\quad\left(\partial_{y} z\right)=\frac{\left[-x z+\frac{2}{y^{2}} z e^{2 z / y}\right]}{\left[x y+\frac{2}{y} e^{2 z / y}-\sin (z)\right]}$.

Partial derivatives and differentiability (Sect. 14.3)

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Geometrical meaning of partial derivatives.
- The derivative of a function is a new function.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$

Definition

The partial derivative with respect to x_{i} at a point
$\left(x_{1}, \cdots, x_{n}\right) \in D$ of a function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$ and $i=1, \cdots, n$, is given by

$$
f_{x_{i}}=\lim _{h \rightarrow 0} \frac{1}{h}\left[f\left(x_{1}, \cdots, x_{i}+h, \cdots, x_{n}\right)-f\left(x_{1}, \cdots, x_{n}\right)\right] .
$$

Remark: To compute $f_{x_{i}}$ derivate f with respect to x_{i} keeping all other variables x_{j} constant.

Notation: $f_{x_{i}}$,

$$
f_{i}, \quad \frac{\partial f}{\partial x_{i}},
$$

$\partial_{x_{i}} f$,
$\partial_{i} f$.

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$

Example

Compute all first partial derivatives of the function
$\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$.
Solution:

$$
\phi_{x}=-\frac{1}{2} \frac{2 x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \quad \Rightarrow \quad \phi_{x}=-\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} .
$$

Analogously, the other partial derivatives are given by

$$
\phi_{y}=-\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \quad \phi_{z}=-\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} .
$$

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$

Example
Verify that $\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

Solution: Recall: $\phi_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$\phi_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\phi_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.
Analogously, $\phi_{y y}=-\frac{1}{r^{3}}+\frac{3 y^{2}}{r^{5}}$, and $\phi_{z z}=-\frac{1}{r^{3}}+\frac{3 z^{2}}{r^{5}}$. Then,

$$
\phi_{x x}+\phi_{y y}+\phi_{z z}=-\frac{3}{r^{3}}+\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{r^{5}}=-\frac{3}{r^{3}}+\frac{3 r^{2}}{r^{5}} .
$$

We conclude that $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

