Partial derivatives and differentiability (Sect. 14.3)

» Partial derivatives and continuity.
» Differentiable functions f : D C R? — R.
» Differentiability and continuity.

» A primer on differential equations.

Partial derivatives and continuity

Recall: The following result holds for single variable functions.

Theorem
If the function f : R — R s differentiable, then f is continuous.

Proof:
: L [f(x+h) = f(x)
flylno[f(x T h) =] = fl@o[ h } h,
. . / . .
/Ilno[f(x + h) — f(x)] = f(x) /llno h=0.
That is, limy_o f(x + h) = f(x), so f is continuous. O

Remark: However, the claim "If f(x,y) and f,(x, y) exist, then
f(x,y) is continuous” is false.




Partial derivatives and continuity

Theorem
If the function f : R — R s differentiable, then f is continuous.

Remark:

» This Theorem is not true for
the partial derivatives of a
function f : R? — R, L00=1,00 =0 1 f(cy)

z

» There exist functions
f - R?2 — R such that

f«(x0, y0) and f,(xo, yo) exist
but f is not continuous at

(x0, ¥0)-

Remark: This is a bad property for a differentiable function.

Partial derivatives and continuity

Remark: Here is another discontinuous function at (0, 0) having
partial derivatives at (0, 0).

Example

(a) Show that f is not

continuous at (0, 0); 2y (x,y) # (0,0),
- flx,y)=q X +y°
(b) Find £(0,0) and 0 (0.0
f,(0,0), where (x,y) =(0,0).

Solution: (a) Along x =0, f(0,y) =0, so Iim0 f(0,y) =0.
y—)

2 2
Along the path x =y, f(x,x) = 2—X2 =1, so IimO f(x,x) = 1.
X X—

The Two-Path Theorem implies that  lim  f(x,y) DNE.
(x,y)—(0,0)




Partial derivatives and continuity
Example

(a) Show that f is not

: _ 2xy
continuous at (0, 0); Fx.y) = Ziyt (x,y) # (0,0),
(b) Find £(0,0) and ’ 0 (0.0

f,(0,0), where (x.¥) = (0,0).

Solution: Recall: lim  f(x,y) DNE.
(x,.y)—(0,0)
(b) The partial derivatives are defined at (0, 0).
.1 1
£.(0,0) = lim — [f(0+ h,0) — £(0,0)] = lim — [0—0]=0.

1 1
(0,0) = lim = [£(0,0+ h) — £(0,0)] = lim = [0—0] =0.

Therefore, £,(0,0) = £,(0,0) = 0. <
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Differentiable functions f : D C R? - R

Recall: A differentiable z L)
function f : R — R at xg
must be approximated by
a line L(x) by (xo, f(x0))
with slope f’(xp).

f(x,)

Line that
approximates
f (x) at xq.

The equation of the tangent line is

L(x) = f'(x0) (x — x0) + f(x0).

The function f is approximated by the line L near xg means

f(x) = L(x)+ €1 (x —x0) with €1(x) — 0 as x — xp.

Remark: The graph of a differentiable function f : D C R — R is

approximated by a line at every point in D.

Differentiable functions f : D C R? - R

Remark: The idea to define differentiable functions:

The graph of a differentiable function f : D C R?> — R is

approximated by a plane at every point in D.

z T L(xy)
L(xy) Plane that Plane that does not i f(x,y)
approximates approximate f(x,y)
fxy)at(x,y,) near (0,0). e ‘

Function f is differentiable at (x ¥ ). (And in its whole domain.) X Function f is not differentiable ONLY at (0,0).

We will show next week that the equation of the plane L is

L(x,y) = fc(x0, y0) (x — x0) + £, (%0, ¥0) (¥ — y0) + f(x0, y0)-




Differentiable functions f : D C R? - R

Definition
Given a function f : D C R? — R and an interior point (xg, yo) in
D, let L be the linear function

L(x,y) = f(x0,¥0) (x — x0) + fy(x0, ¥0) (¥ — y0) + f (X0, 0)-

The function f is called differentiable at (xp, yo) iff the function f
is approximated by the linear function L near (xp, yo), that is,

f(x,y) = L(x,y) +e1(x —x0) +e2(y — yo)

where the functions ¢; and e — 0 as (x,y) — (xo, Y0)-
The function f is differentiable iff f is differentiable at every
interior point of D.

Differentiable functions f : D C R? - R

Remark: Recalling the linear function L given above,

L(x,y) = f(x0, o) (x — %0) + fy,(x0, 0) (¥ — ¥0) + f(x0, y0),
an equivalent expression for f being differentiable,
f(x,y) = L(x,y) + e1(x —x0) + e2(y — o),

is the following: Denote z = f(x,y) and zy = f(xo, y0), and
introduce the increments

Az =(z—2z), Ay=(y—y), Ax=(x—x);
then, the equation above is
Az = f(x0, ¥0) Ax + f,(x0, Yo) Ay + €1 Ax + €2 Ay.

(Equation used in the textbook to define a differentiable function.)
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Differentiability and continuity

Remark: We will show in

Sect. 14.6 that the graph of a
differentiable function

f: D C R? — R is approximated
by a plane at every point in D.

L(xy) Plane that
approximates
f(xy)at(x,y,)

Function f is differentiable at (x 4y o). (And in its whole domain.)

Theorem
If a function f - D C R? — R is differentiable, then f is continuous.

Remark: A simple sufficient condition on a function
f 1 D C R?> — R guarantees that f is differentiable.

Theorem
If the partial derivatives f, and f, of a function f : D C R2 — R are
continuous in an open region R C D, then f is differentiable in R.
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A primer on differential equations

Remark: A differential equation is an equation where the unknown
is a function and the function together with its derivatives appear
in the equation.

Example

Given a constant k € R, find all solutions f : R — R to the

differential equation
f'(x) = k f(x).

Solution: Multiply by e~** the equation above f’(x) — kf(x) = 0.
The result is f'(x) e — f(x) ke ™ = 0.

The left-hand side is a total derivative, |f(x) e_kx}/ = 0.

The solution of the equation above is f(x)e™* = ¢, with ¢ € R,

Therefore, f(x) = c e, <




A primer on differential equations

Remark: Often in physical applications appear three differential
equations for functions f : D C R" — R, with n = 2,3 4.

» The Laplace equation: (Gravitation, electrostatics.)
fox + fyy + fz = 0.
» The Heat equation: (Heat propagation, diffusion.)
fo = k (fx + fyy + fzz).
» The Wave equation: (Light, sound, gravitation.)

fit = v (fxx + f;/y + fzz)-

A primer on differential equations

Example

Verify that the function T(t,x) = e *!sin(2x) satisfies the
one-space dimensional heat equation T; = T.

Solution: We first compute T,
T; = —4e 'sin(2x).
Now compute Ty,

T. =2e fcos(2x) = Ty = —4e sin(2x)

We conclude that 7T; = T,..




A primer on differential equations

Example
1 .
Verify that f(x,y,z) = satisfies the Laplace
\/X2 _|_y2 _|_22
equation : f + f,, + 1 = 0.
. X
Solution: Recall: f, = — (x2 Y 22)3/2. Then,
oo 1 L3 2x?
XX — (X2 _|_y2 + 22)3/2 2 (X2 +y2 + 22)5/2-
1 3x2
_ 2 2 2 _ - >
Denoter—\/x + y? + z4, then £, = 3 + 5
1 3y? 1 3722
AnaIOgOUS|y, fyy = —ﬁ + F, and fzz = —ﬁ -+ 7 Then,
3 3(x*+y%+2%) 3 32
fxx+fyy+fzz:_ﬁ+ 5 :—E‘FF:O-
We conclude that f + f,, + f,, = 0. <

A primer on differential equations

Example
Verify that the function f(t,x) = (vt — x)3, with v € R, satisfies
the one-space dimensional wave equation fix = v2f.

Solution: We first compute fy,
ft :3V(Vt—X)2 = ftt :6V2(Vt—X).
Now compute fy,

fo=—=3(vt —x)®> = fu =6(vt—x).

Since v2f,, = 6v2 (vt — x), then fi; = V2 Fos. <




A primer on differential equations

Example

Given any v € R and any twice continuously differentiable function
u:R — R, verify that f(t,x) = u(vt — x), satisfies the one-space
dimensional wave equation fir = v2fy.

Solution: We first compute fy,

fr=vid(vt—x) = fu= V2 u’ (vt — x).
Now compute fyy,

fy = —u'(vt — X)2 = foo = U"(vt — x).

Since v2f, = v2u”(vt — x), then fi; = V2 Foy. <




