Triple integrals in Cartesian coordinates (Sect. 15.5)

- ▶ Review: Triple integrals in arbitrary domains.
- ► Examples: Changing the order of integration.
- ▶ The average value of a function in a region in space.
- ► Triple integrals in arbitrary domains.

Review: Triple integrals in arbitrary domains

Theorem

If $f:D\subset\mathbb{R}^3\to\mathbb{R}$ is continuous in the domain

$$D = \big\{ x \in [x_0, x_1], \ y \in [h_0(x), h_1(x)], \ z \in [g_0(x, y), g_1(x, y)] \big\},\$$

where $g_0, g_1 : \mathbb{R}^2 \to \mathbb{R}$ and $h_0, h_1 : \mathbb{R} \to \mathbb{R}$ are continuous, then the triple integral of the function f in the region D is given by

$$\iiint_D f \, dv = \int_{x_0}^{x_1} \int_{h_0(x)}^{h_1(x)} \int_{g_0(x,y)}^{g_1(x,y)} f(x,y,z) \, dz \, dy \, dx.$$

Example

In the case that D is an ellipsoid, the figure represents the graph of functions g_1 , g_0 and h_1 , h_0 .

Triple integrals in Cartesian coordinates (Sect. 15.5)

- ▶ Review: Triple integrals in arbitrary domains.
- **Examples: Changing the order of integration.**
- ▶ The average value of a function in a region in space.
- ▶ Triple integrals in arbitrary domains.

Changing the order of integration

Example

Change the order of integration in the triple integral

$$V = \int_{-1}^{1} \int_{-3\sqrt{1-x^2}}^{3\sqrt{1-x^2}} \int_{-2\sqrt{1-x^2-(y/3)^2}}^{2\sqrt{1-x^2-(y/3)^2}} dz \, dy \, dx.$$

Solution: First: Sketch the integration region.

Start from the outer integration limits to the inner limits.

▶ Limits in x: $x \in [-1, 1]$.

Limits in y: $|y| \leq 3\sqrt{1-x^2}$,

so,
$$x^2 + \frac{y^2}{3^2} \leqslant 1$$
.

 $x^2 + \frac{y^2}{3^2}$

$$|z| \le 2\sqrt{1 - x^2 - \frac{y^2}{3^2}}$$
, so,
 $x^2 + \frac{y^2}{3^2} + \frac{z^2}{3^2} \le 1$.

Changing the order of integration

Example

Change the order of integration in the triple integral

$$V = \int_{-1}^{1} \int_{-3\sqrt{1-x^2}}^{3\sqrt{1-x^2}} \int_{-2\sqrt{1-x^2-(y/3)^2}}^{2\sqrt{1-x^2-(y/3)^2}} dz \, dy \, dx.$$

Solution: Region: $x^2 + \frac{y^2}{3^2} + \frac{z^2}{2^2} \le 1$. We conclude:

$$V = \int_{-1}^{1} \int_{-2\sqrt{1-x^2}}^{2\sqrt{1-x^2}} \int_{-3\sqrt{1-x^2-(z/2)^2}}^{3\sqrt{1-x^2-(z/2)^2}} dy dz dx.$$

$$V = \int_{-2}^{2} \int_{-\sqrt{1-(z/2)^2}}^{\sqrt{1-(z/2)^2}} \int_{-3\sqrt{1-x^2-(z/2)^2}}^{3\sqrt{1-x^2-(z/2)^2}} dy \, dx \, dz.$$

$$V = \int_{-2}^{2} \int_{-3\sqrt{1-(z/2)^2}}^{3\sqrt{1-(z/2)^2}} \int_{-\sqrt{1-(y/3)^2-(z/2)^2}}^{\sqrt{1-(y/3)^2-(z/2)^2}} dx \, dy \, dz.$$

Changing the order of integration

Example

Interchange the limits in
$$V = \int_0^2 \int_0^{1-x/2} \int_0^{3-3y-3x/2} dz \, dy \, dx$$
.

Solution: Recall: Sketch the integration region starting from the outer integration limits to the inner integration limits.

- ▶ $x \in [0, 2]$.
- $y \in \left[0, 1 \frac{x}{2}\right]$ so the upper limit is
- $ightharpoonup z \in \left[0, 3 \frac{3x}{2} 3y\right]$ so the upper This plane contains the points (2,0,0), (0,1,0) and (0,0,3).

 \triangleleft

Changing the order of integration

Example

Interchange the limits in
$$V = \int_0^2 \int_0^{1-x/2} \int_0^{3-3y-3x/2} dz \, dy \, dx$$
.

Solution: The region:
$$x \ge 0$$
, $y \ge 0$, $z \ge 0$ and $6 \ge 3x + 6y + 2z$.
$$V = \int_0^3 \int_0^{1-z/3} \int_0^{2-2y-2z/3} dx \, dy \, dz.$$

$$V = \int_0^1 \int_0^{3-3y} \int_0^{2-2y-2z/3} dx \, dz \, dy.$$

$$V = \int_0^2 \int_0^{3-3x/2} \int_0^{1-x/2-z/3} dy \, dz \, dx.$$

$$V = \int_0^3 \int_0^{2-2z/3} \int_0^{1-x/2-z/3} dy \, dx \, dz.$$

Triple integrals in Cartesian coordinates (Sect. 15.5)

- ▶ Review: Triple integrals in arbitrary domains.
- ► Examples: Changing the order of integration.
- ▶ The average value of a function in a region in space.
- ► Triple integrals in arbitrary domains.

Average value of a function in a region in space

Definition (Review: 1-variable)

The *average* of a function $f:[a,b] \to \mathbb{R}$ on the interval [a,b], denoted by \overline{f} , is given by

$$\overline{f} = \frac{1}{(b-a)} \int_a^b f(x) \, dx.$$

Definition

The *average* of a function $f: R \subset \mathbb{R}^3 \to \mathbb{R}$ on the region R with volume V, denoted by \overline{f} , is given by

$$\overline{f} = \frac{1}{V} \iiint_R f \, dv.$$

Average value of a function in a region in space

Example

Find the average of f(x, y, z) = xyz in the first octant bounded by the planes x = 1, y = 2, z = 3.

Solution: The volume of the rectangular integration region is

$$V = \int_0^1 \int_0^2 \int_0^3 dz \, dy \, dx \quad \Rightarrow \quad V = 6.$$

The average of function f is:

$$\overline{f} = \frac{1}{6} \int_0^1 \int_0^2 \int_0^3 xyz \, dz \, dy \, dx = \frac{1}{6} \left[\int_0^1 x \, dx \right] \left[\int_0^2 y \, dy \right] \left[\int_0^3 z \, dz \right]$$

$$\overline{f} = \frac{1}{6} \left(\frac{x^2}{2} \Big|_0^1 \right) \left(\frac{y^2}{2} \Big|_0^2 \right) \left(\frac{z^2}{2} \Big|_0^3 \right) = \frac{1}{6} \left(\frac{1}{2} \right) \left(\frac{4}{2} \right) \left(\frac{9}{2} \right) \implies \overline{f} = 1/4.$$

Triple integrals in Cartesian coordinates (Sect. 15.5)

- ▶ Review: Triple integrals in arbitrary domains.
- ▶ Examples: Changing the order of integration.
- ▶ The average value of a function in a region in space.
- ► Triple integrals in arbitrary domains.

Triple integrals in arbitrary domains

Example

Compute the triple integral of f(x, y, z) = z in the region bounded by $x \ge 0$, $z \ge 0$, $y \ge 3x$, and $y \ge y^2 + z^2$.

Solution: Recall: Sketch the integration region.

- ► The integration region is in the first octant.
- It is inside the cylinder $v^2 + z^2 = 9$.
- It is on one side of the plane 3x y = 0. The plane has normal vector $\mathbf{n} = \langle 3, -1, 0 \rangle$ and contains (0, 0, 0).

Triple integrals in arbitrary domains

Example

Compute the triple integral of f(x, y, z) = z in the region bounded by $x \ge 0$, $z \ge 0$, $y \ge 3x$, and $y \ge y^2 + z^2$.

Solution: We have found the region:

The integration limits are:

- Limits in z: $0 \le z \le \sqrt{9 y^2}$.
- ▶ Limits in x: $0 \le x \le y/3$.
- ▶ Limits in y: $0 \le y \le 3$.

We obtain
$$I = \int_0^3 \int_0^{y/3} \int_0^{\sqrt{9-y^2}} z \, dz \, dx \, dy$$
.

Triple integrals in arbitrary domains

Example

Compute the triple integral of f(x, y, z) = z in the region bounded by $x \ge 0$, $z \ge 0$, $y \ge 3x$, and $9 \ge y^2 + z^2$.

Solution: Recall:

$$\int_0^3 \int_0^{y/3} \int_0^{\sqrt{9-y^2}} z \, dz \, dx \, dy.$$

Just for practice, let us change the integration order to dz dy dx:

The result is:
$$I = \int_0^1 \int_{3x}^3 \int_0^{\sqrt{9-y^2}} z \, dz \, dy \, dx$$
.

Triple integrals in arbitrary domains

Example

Compute the triple integral of f(x, y, z) = z in the region bounded by $x \ge 0$, $z \ge 0$, $y \ge 3x$, and $y \ge y^2 + z^2$.

Solution: Recall:
$$I = \int_0^1 \int_{3x}^3 \int_0^{\sqrt{9-y^2}} z \, dz \, dy \, dx$$
.

We now compute the integral:

$$I = \int_0^1 \int_{3x}^3 \left(\frac{z^2}{2}\Big|_0^{\sqrt{9-y^2}}\right) dy \, dx,$$

$$I = \frac{1}{2} \int_0^1 \int_{3x}^3 (9-y^2) dy \, dx,$$

$$I = \frac{1}{2} \int_0^1 \left[9\left(y\Big|_{3x}^3\right) - \left(\frac{y^3}{3}\Big|_{3x}^3\right)\right] dx.$$

Triple integrals in arbitrary domains

Example

Compute the triple integral of f(x, y, z) = z in the region bounded by $x \ge 0$, $z \ge 0$, $y \ge 3x$, and $y \ge y^2 + z^2$.

Solution: Recall:
$$I = \frac{1}{2} \int_0^1 \left[9 \left(y \Big|_{3x}^3 \right) - \left(\frac{y^3}{3} \Big|_{3x}^3 \right) \right] dx$$
.

Therefore,

$$I = \frac{1}{2} \int_0^1 \left[27(1-x) - 9(1-x)^3 \right] dx,$$

$$I = \frac{9}{2} \int_0^1 \left[3(1-x) - (1-x)^3 \right] dx.$$

Substitute
$$u = 1 - x$$
, then $du = -dx$, so, $I = \frac{9}{2} \int_0^1 (3u - u^3) du$.

Triple integrals in arbitrary domains

Example

Compute the triple integral of f(x, y, z) = z in the region bounded by $x \ge 0$, $z \ge 0$, $y \ge 3x$, and $9 \ge y^2 + z^2$.

Solution: Recall:
$$I = \frac{9}{2} \int_0^1 (3u - u^3) du$$
.

$$I = \frac{9}{2} \int_0^1 (3u - u^3) du,$$

$$I = \frac{9}{2} \left[3 \left(\frac{u^2}{2} \Big|_0^1 \right) - \left(\frac{u^4}{4} \Big|_0^1 \right) \right] = \frac{9}{2} \left(\frac{3}{2} - \frac{1}{4} \right).$$

We conclude
$$\iiint_D f \, dv = \frac{45}{8}$$
.

 \triangleleft