

Review: 2×2 Diagonalizable Systems

Theorem

If the 2 × 2 constant matrix A is diagonalizable with eigenvalues λ_{\pm} and corresponding eigenvectors \mathbf{v}^{\pm} , then the general solution to the linear system $\mathbf{x}' = A\mathbf{x}$ is

$$\mathbf{x}_{\mathrm{gen}}(t) = c_{\scriptscriptstyle +} \mathbf{v}^{\scriptscriptstyle +} e^{\lambda_{\scriptscriptstyle +} t} + c_{\scriptscriptstyle -} \mathbf{v}^{\scriptscriptstyle -} e^{\lambda_{\scriptscriptstyle -} t}.$$

Remark: We classify these systems by their matrix eigenvalues:

- (A) The eigenvalues λ_{+} , λ_{-} are real and distinct.
- (B) The eigenvalues $\lambda_{\pm} = \alpha \pm \beta i$ are distinct and complex.
- (C) The eigenvalues $\lambda_{+} = \lambda_{-} = \lambda_{0}$ is repeated and real.

Phase Portraits

Remark:

- Two types of graphs of solutions to differential systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t. (Recall the solution in the Example from the previous lecture: $x_1(t) = 3 e^{4t} - e^{-2t}$ and $x_2(t) = 3 e^{4t} + e^{-2t}$.)
- Case (ii): Express the solution as a vector-valued function,

 $\mathbf{x}(t) = c_1 \, \mathbf{v}_1 \, e^{\lambda_1 t} + c_2 \, \mathbf{v}_2 \, e^{\lambda_2 t},$

and plot the vector $\mathbf{x}(t)$ for different values of t.

• Case (ii) is called a *phase portrait*.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions

$$\mathbf{x}^{(+)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}, \quad \mathbf{x} = c_{-} \mathbf{x}^{(+)} + c_{+} \mathbf{x}^{(-)}.$$

Solution:

We start plotting the vectors

Example

Plot the phase portrait of several linear combinations of the fundamental solutions

$$\mathbf{x}^{(+)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}, \quad \mathbf{x} = c_+ \mathbf{x}^{(+)} + c_- \mathbf{x}^{(-)}.$$

Solution: We now plot the functions

$$\mathbf{x}^{(+)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t},$$
 $\mathbf{x}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$

Real Distinct Eigenvalues

Example

Plot the phase portrait of several linear combinations of the fundamental solutions

$$\mathbf{x}^{(+)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}, \quad \mathbf{x} = c_+ \, \mathbf{x}^{(+)} + c_- \, \mathbf{x}^{(-)}.$$

Solution: We now plot the functions

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

Real Distinct Eigenvalues

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(+)} = egin{bmatrix} 1 \ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(-)} = egin{bmatrix} -1 \ 1 \end{bmatrix} e^{-2t}, \quad \mathbf{x} = c_+ \, \mathbf{x}^{(+)} + c_- \, \mathbf{x}^{(-)}.$$

Solution:

We now plot the four functions

$$\mathbf{x}^{(+)}, -\mathbf{x}^{(+)}, \mathbf{x}^{(-)}, -\mathbf{x}^{(-)},$$

and $x^{(+)} + x^{(-)}$.

$$\begin{bmatrix} 1\\1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1\\1 \end{bmatrix} e^{-2t}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(+)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(-)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}, \quad \mathbf{x} = c_+ \, \mathbf{x}^{(+)} + c_- \, \mathbf{x}^{(-)}.$$

Solution: We now plot the eight functions

$$\mathbf{x}^{(+)}, -\mathbf{x}^{(+)}, \mathbf{x}^{(-)}, -\mathbf{x}^{(-)},$$

 $\mathbf{x}^{(+)} + \mathbf{x}^{(-)}, -\mathbf{x}^{(+)} + \mathbf{x}^{(-)},$

$$\mathbf{x}^{(+)} - \mathbf{x}^{(-)}, \quad -\mathbf{x}^{(+)} - \mathbf{x}^{(-)}.$$

Real Distinct Eigenvalues

Problem:

Consider a 2 × 2 matrix A having two different, real eigenvalues $\lambda_+ \neq \lambda_-$, so A has two non-proportional eigenvectors \mathbf{v}^+ , \mathbf{v}^- (eigen-directions).

Given a solution $\mathbf{x}(t) = c_+ \mathbf{v}^+ e^{\lambda_+ t} + c_- \mathbf{v}^- e^{\lambda_- t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_+ and c_- .

The plots are different depending on the eigenvalues signs. We have the following three sub-cases:

- (i) $0 < \lambda_{-} < \lambda_{+}$, both positive;
- (ii) $\lambda_- < 0 < \lambda_+$, one positive the other negative;
- (iii) $\lambda_{-} < \lambda_{+} < 0$, both negative.

Real Distinct Eigenvalues (Saddle)

Phase portrait: Case (ii), two different, real eigenvalues $\lambda_{-} \neq \lambda_{+}$, sub-case $\lambda_{-} < 0 < \lambda_{+}$, one eigenvalue positive the other negative.

2×2 Nondiagonalizable Systems

Example

Sketch a phase portrait of solutions to $\mathbf{x}' = A\mathbf{x}$, with A nondiagonalizable and solutions $\mathbf{x}^{(1)} = \mathbf{v} e^{\lambda_0 t}$, $\mathbf{x}^{(2)} = (t\mathbf{v} + \mathbf{w}) e^{\lambda_0 t}$.

Solution:

We assume $\lambda_0 > 0$.

We plot the functions

$$\mathbf{x}^{(1)} = \mathbf{v} \, e^{\lambda_0 t},$$

$$\mathbf{x}^{(2)} = (t\mathbf{v} + \mathbf{w}) e^{\lambda_0 t}.$$

2×2 Nondiagonalizable Systems (Stable)

Example

Sketch a phase portrait of solutions to $\mathbf{x}' = A\mathbf{x}$, with A nondiagonalizable and solutions $\mathbf{x}^{(1)} = \mathbf{v} e^{\lambda_0 t}$, $\mathbf{x}^{(2)} = (t\mathbf{v} + \mathbf{w}) e^{\lambda_0 t}$.

Solution:

We now assume $\lambda_0 < 0$.

We plot the functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)}$$

$$\mathbf{x}^{(2)}, -\mathbf{x}^{(2)}$$

