- Review: 2×2 Diagonalizable Systems
- Phase Portraits
- Real Distinct Eigenvalues
- Complex Eigenvalues
- Repeated Eigenvalue
- 2×2 Nondiagonalizable Systems

Review: 2×2 Diagonalizable Systems

Theorem

If the 2×2 constant matrix A is diagonalizable with eigenvalues $\lambda_{ \pm}$and corresponding eigenvectors $\mathbf{v}^{ \pm}$, then the general solution to the linear system $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}_{\operatorname{gen}}(t)=c_{+} \mathbf{v}^{+} e^{\lambda_{+} t}+c_{-} \mathbf{v}^{-} e^{\lambda_{-} t}
$$

Remark: We classify these systems by their matrix eigenvalues:
(A) The eigenvalues λ_{+}, λ_{-}are real and distinct.
(B) The eigenvalues $\lambda_{ \pm}=\alpha \pm \beta i$ are distinct and complex.
(C) The eigenvalues $\lambda_{+}=\lambda_{-}=\lambda_{0}$ is repeated and real.

- Review: 2×2 Diagonalizable Systems
- Phase Portraits
- Real Distinct Eigenvalues
- Complex Eigenvalues
- Repeated Eigenvalue
- 2×2 Nondiagonalizable Systems

Phase Portraits

Remark:

- Two types of graphs of solutions to differential systems:
(i) The graphs of the vector components;
(ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$, and graph x_{1} and x_{2} as functions of t.
(Recall the solution in the Example from the previous lecture:
$x_{1}(t)=3 e^{4 t}-e^{-2 t}$ and $x_{2}(t)=3 e^{4 t}+e^{-2 t}$.)
- Case (ii): Express the solution as a vector-valued function,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}
$$

and plot the vector $\mathbf{x}(t)$ for different values of t.

- Case (ii) is called a phase portrait.

Two-by-Two Phase Portraits (Sect. 5.4)

- Review: 2×2 Diagonalizable Systems
- Phase Portraits
- Real Distinct Eigenvalues
- Complex Eigenvalues
- Repeated Eigenvalue
- 2×2 Nondiagonalizable Systems

Real Distinct Eigenvalues

Example

Plot the phase portrait of several linear combinations of the fundamental solutions

$$
\mathbf{x}^{(+)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}, \quad \mathbf{x}=c_{-} \mathbf{x}^{(+)}+c_{+} \mathbf{x}^{(-)}
$$

Solution:
We start plotting the vectors

$$
\begin{aligned}
& \mathbf{v}^{+}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
& \mathbf{v}^{-}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
\end{aligned}
$$

Real Distinct Eigenvalues

Example

Plot the phase portrait of several linear combinations of the fundamental solutions

$$
\mathbf{x}^{(+)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}, \quad \mathbf{x}=c_{+} \mathbf{x}^{(+)}+c_{-} \mathbf{x}^{(-)}
$$

Solution:
We now plot the functions

$$
\begin{gathered}
\mathbf{x}^{(+)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \\
\mathbf{x}^{(-)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
\end{gathered}
$$

Real Distinct Eigenvalues

Example

Plot the phase portrait of several linear combinations of the fundamental solutions

$$
\mathbf{x}^{(+)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}, \quad \mathbf{x}=c_{+} \mathbf{x}^{(+)}+c_{-} \mathbf{x}^{(-)}
$$

Solution:
We now plot the functions

$$
\begin{gathered}
-\mathbf{x}^{(+)}=-\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \\
-\mathbf{x}^{(-)}=-\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
\end{gathered}
$$

Real Distinct Eigenvalues

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}, \quad \mathbf{x}=c_{+} \mathbf{x}^{(+)}+c_{-} \mathbf{x}^{(-)}
$$

Solution:
We now plot the four functions

$$
\begin{array}{ll}
\mathbf{x}^{(+)}, & -\mathbf{x}^{(+)} \\
\mathbf{x}^{(-)}, & -\mathbf{x}^{(-)}
\end{array}
$$

Real Distinct Eigenvalues

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}, \quad \mathbf{x}=c_{+} \mathbf{x}^{(+)}+c_{-} \mathbf{x}^{(-)}
$$

Solution:
We now plot the four functions
$\mathbf{x}^{(+)},-\mathbf{x}^{(+)}, \mathbf{x}^{(-)},-\mathbf{x}^{(-)}$,
and $\mathbf{x}^{(+)}+\mathbf{x}^{(-)}$,

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} .
$$

Real Distinct Eigenvalues

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(+)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(-)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}, \quad \mathbf{x}=c_{+} \mathbf{x}^{(+)}+c_{-} \mathbf{x}^{(-)}
$$

Solution:
We now plot the eight functions
$\mathbf{x}^{(+)},-\mathbf{x}^{(+)}, \mathbf{x}^{(-)},-\mathbf{x}^{(-)}$,
$\mathbf{x}^{(+)}+\mathbf{x}^{(-)}, \quad-\mathbf{x}^{(+)}+\mathbf{x}^{(-)}$,
$\mathbf{x}^{(+)}-\mathbf{x}^{(-)}, \quad-\mathbf{x}^{(+)}-\mathbf{x}^{(-)}$.

Real Distinct Eigenvalues

Problem:

Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_{+} \neq \lambda_{-}$, so A has two non-proportional eigenvectors $\mathbf{v}^{+}, \mathbf{v}^{-}$ (eigen-directions).

Given a solution $\mathbf{x}(t)=c_{+} \mathbf{v}^{+} e^{\lambda_{+} t}+c_{-} \mathbf{v}^{-} e^{\lambda_{-} t}$, to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_{+}and c_{-}.

The plots are different depending on the eigenvalues signs. We have the following three sub-cases:
(i) $0<\lambda_{-}<\lambda_{+}$, both positive;
(ii) $\lambda_{-}<0<\lambda_{+}$, one positive the other negative;
(iii) $\lambda_{-}<\lambda_{+}<0$, both negative.

Real Distinct Eigenvalues (Unstable)

Phase portrait: Case (i), two different, real eigenvalues $\lambda_{-} \neq \lambda_{+}$, sub-case $0<\lambda_{-}<\lambda_{+}$, both eigenvalue positive.

Real Distinct Eigenvalues (Saddle)

Phase portrait: Case (ii), two different, real eigenvalues $\lambda_{-} \neq \lambda_{+}$, sub-case $\lambda_{-}<0<\lambda_{+}$, one eigenvalue positive the other negative.

Real Distinct Eigenvalues (Stable)

Phase Portrait: Case (iii), two different, real eigenvalues $\lambda_{-} \neq \lambda_{+}$, sub-case $\lambda_{-}<\lambda_{+}<0$, both eigenvalues negative.

Two-by-Two Phase Portraits (Sect. 5.4)

- Review: 2×2 Diagonalizable Systems
- Phase Portraits
- Real Distinct Eigenvalues
- Complex Eigenvalues
- Repeated Eigenvalue
- 2×2 Nondiagonalizable Systems

Complex Eigenvalues

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{rr}2 & 3 \\ -3 & 2\end{array}\right]$,
with $\lambda_{ \pm}=2 \pm 3 i$ and $\mathbf{v}^{ \pm}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.

Solution:

The phase portrait of the vectors

$$
\begin{gathered}
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right], \\
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right],
\end{gathered}
$$

is a radius one circle.

Complex Eigenvalues (Unstable)

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{rr}2 & 3 \\ -3 & 2\end{array}\right]$, with $\lambda_{ \pm}=2 \pm 3 i$ and $\mathbf{v}^{ \pm}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.
Solution:
The phase portrait of the solutions

$$
\begin{gathered}
\mathbf{x}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t}, \\
\mathbf{x}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right] e^{2 t},
\end{gathered}
$$

Complex Eigenvalues (Unstable) (Center) (Stable)

Example

Given any vectors a and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha>0, \alpha=0$, and $\alpha<0$, where $\beta>0$.
Solution:

Two-by-Two Phase Portraits (Sect. 5.4)

- Review: 2×2 Diagonalizable Systems
- Phase Portraits
- Real Distinct Eigenvalues
- Complex Eigenvalues
- Repeated Eigenvalue
- 2×2 Nondiagonalizable Systems

2×2 Nondiagonalizable Systems

Example

Sketch a phase portrait of solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$, with A nondiagonalizable and solutions $\mathbf{x}^{(1)}=\mathbf{v} e^{\lambda_{0} t}, \mathbf{x}^{(2)}=(t \mathbf{v}+\mathbf{w}) e^{\lambda_{0} t}$.

Solution:

We assume $\lambda_{0}>0$.
We start plotting the vectors \mathbf{v} and \mathbf{w}.

Suppose they are as in the
Figure.

2×2 Nondiagonalizable Systems

Example

Sketch a phase portrait of solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$, with A nondiagonalizable and solutions $\mathbf{x}^{(1)}=\mathbf{v} e^{\lambda_{0} t}, \mathbf{x}^{(2)}=(t \mathbf{v}+\mathbf{w}) e^{\lambda_{0} t}$.

Solution:

We assume $\lambda_{0}>0$.
We plot the functions

$$
\begin{gathered}
\mathbf{x}^{(1)}=\mathbf{v} e^{\lambda_{0} t} \\
\mathbf{x}^{(2)}=(t \mathbf{v}+\mathbf{w}) e^{\lambda_{0} t}
\end{gathered}
$$

2×2 Nondiagonalizable Systems (Unstable)

Example

Sketch a phase portrait of solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$, with A nondiagonalizable and solutions $\mathbf{x}^{(1)}=\mathbf{v} e^{\lambda_{0} t}, \mathbf{x}^{(2)}=(t \mathbf{v}+\mathbf{w}) e^{\lambda_{0} t}$.

Solution:

We assume $\lambda_{0}>0$.
We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{((1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

2×2 Nondiagonalizable Systems (Stable)

Example

Sketch a phase portrait of solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$, with A nondiagonalizable and solutions $\mathbf{x}^{(1)}=\mathbf{v} e^{\lambda_{0} t}, \mathbf{x}^{(2)}=(t \mathbf{v}+\mathbf{w}) e^{\lambda_{0} t}$.

Solution:

We now assume $\lambda_{0}<0$.
We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)} .
\end{array}
$$

