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Mod(X) =mapping class group of surface X (closed or with boundary)

@ Quantum Representations. Given odd integer r > 3, and a primitive
2r-th root of unity there is a (projective) representation

pr: Mod(X) — PAut(RT,(X)).

@ “Large -r behavior of p, and Nielsen-Thurston Classification : Know facts
and and open conjectures (AMU Conjecture).

@ Recall basics about TQFT underlying the quantum representations.: In
particular Turaev-Viro TV,(M) invariants of a mapping torus M; are
obtained from traces of p,.

@ Chen-Yang Conjecture = AMU conjecture: Exponential r-growth for
TV,(My) implies f satisfies AMU.

@ How do we “check” exponential r-growth for for TV,(M;) ? Do we need to
know C-Y conjecture?

@ TV invariants and geometric decompositions of mapping tori: Integer vs
non integer values of TV invariants.
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Nielsen—Thurston classification

Convention. ¥ = ¥, ,= surface of genus g and n-bdry components.
Assume 3g — 3+ n > 0.

Given a mapping class € Mod(X) there is a representative g : ¥ — ¥ such
that at least one of the following holds:

@ gis periodic, i.e. some power of g is the identity;

@ gis reducible, i.e. preserves some finite union of disjoint simple closed
curves [ on X; or

@ g is pseudo-Anosov (never periodic or reducible)

@ Ifg: ¥ — ¥ reducible, then a power of g acts on each component of ©
cutalong .

@ If at least one of the “pieces” is is pseudo-Anosov, we say g has
non-trivial pseudo-Anosov pieces.
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Mapping tori and Nielsen—Thurston classification

For f € Mod(X) a mapping class let

M; = F % [0,1]/ (x,0)(f(x),1)

be the mapping torus of f.
We have:

@ fis reducible iff M; has incompressible tori. In that case M; can be cut
along a canonical collection of such tori into geometric pieces (JSJ
decomposition-geometric decomposition).

@ In fact, by the Geometrization Theorem, each piece of the decomposition
will be either Seifert fibered manifold or a hyperbolic.

@ Gromov norm of M;: ||Ms|| = vieVoI (H), Vol (H) is the sum of the
hyperbolic volumes of components of the geometric decomposition.

@ fis periodic iff My is a Seifert fibered manifold (|| V|| = 0).
@ fis pseudo-Anosov, iff M; has hyperbolic structure.

@ Summary: f € Mod(X) has non-trivial pseudo-Anosov pieces iff
||Mf|| > 0.
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Quantum representations

@ Witten-Reshetikin-Turaev, SO(3)-representations:
@ For each odd integer r > 3, let U, = {0,2,4,...,r — 3}.

@ Given a primitive 2r-th root of unity (o, a compact oriented surface %,
and a coloring ¢ of the components of 9% by elements of U,

@ there is a finite dimensional C-vector space, RT,(X, ¢) and a projective
representation:
pr.c - Mod(X) — End(RT,(X, c)).

@ We have dim(RT,(Xg,, c)) < r39-3+". (dimensions given by Verlinde
formula)

@ Note. For different root of unity p, ¢ are related by Galois group actions:
Say, e.qg. if pr ¢(f) has finite order at some f € Mod(X), for some root of
unity then, p, <(f) has finite order for all roots of unity.

i

@ We will work with (o, = e .
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@ Question. What geometric information of Mod(X) do the representations
pr.c detect? Do they detect the Nielsen-Thurston classification of
mapping classes?

@ The representations p, ¢ are not faithful! The images of Dehn twists have
finite order! However, p; . are asymptotically faithful:

@ (Freedman-Walker-Wang, Andersen) Let f € Mod(X). If pr ¢(f) = 1, for all
r,c,then f =1.
[except in the few cases when Mod(X) has center and f is an involution.]

@ Corollary. There is n, such that

(prc(f)" = Ald forall r,c, iff f7=1.
(i.e fis periodic) [again some exceptions].
@ Andersen-Masbaum-Ueno conjectured (2002).

@ Conjecture. (AMU) f € Mod(X) has PA pieces iff for ever r >> 0 there is
r a choice of colors ¢ such that p; c(¢) has infinite order.
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What is known:

@ Andersen, Masbaum and Ueno (2004) proved their conjecture when
Y =¥, 3 or X 4; the three or four-holed sphere.

@ Santharoubane proved the conjecture for the one-holed torus.

@ Egsgaard and Jorgensen (2012) and Santharoubane (2015) proved the
conjecture for families for mapping classes in ¥ = X p, for all n > 4.

@ In all above cases the quantum representations turn out to be related to
previously studied braid group representations: (specializations of Burau
representations, McMullen’s representations related to actions on
homology of branched covers of Lg 5.)

@ For surfaces of genus g > 1 no examples known till 2016!

@ Using Birman exact sequences of mapping class groups, one extracts
representations on 71 (X) from the representations p; c.

@ Marché and Santharoubane used these representations to obtain
examples of pseudo-Anosov mappings classes satisfying the AMU
conjecture by exhibiting “apppropriate” elements in 71 (X). Gave explicit
curves on genus 2 surfaces (more next).
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Quantum representations of surface groups

@ x(X) < 0 and xp a marked point in the interior of ¥ and Mod(X, xo) group
of classes preserving xo

@ Birman Exact Sequence.
0 — (X, X0) — Mod(X, Xo) — Mod(X) — 0.

@ Kra’s criterion. v € 71(X, Xo) represents a pseudo-Anosov mapping
class iff ~ fills .

@ The quantum representations give projective representation:

prc : m(X) = End(RT/(%, €)).

@ (Koberda-Satharoubane) used p, . to answer an open question (asked by
several people independently Kent, Kisin, Marché, McMullen, ...):

@ Constructed a linear a representation of 71 (S), that has infinite image,
but the image of every simple closed curve has finite order!

@ Their work led to (another) algorithm that decides whether or not
~v € m1(X, Xo) is freely homotopic to a simple loop!
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The examples of Marché-Satharoubane

@ Gave first examples of pseudo-Anosov mapping classes, for surfaces of
genus > 1, that satisfy the

@ AMU Conjecture for surface groups. If a non-trivial element
~ € (X, Xo) is not a power of a class represented by a simple loop, then
pr.c(7) has infinite order for r >> 0 and a choice of c.

@ Their examples are realized by immersed curves that fill ¥ and satisfy an
additional technical condition they called Euler incompressibility.

@ They use skein theoretic methods in S' x ¥ to construct a polynomial
invariants links X. Roughly speaking, non-triviality of of some invariant for
~v € (X, X0), implies that v satisfies the AMU Conjecture for surface
groups. Euler incompressibility of v assures desired non-triviallity.

@ Their criterion is hard to apply and, for fixed genus, it leads to finitely
many (up to conjugation and powers) pseudo-Anosov mapping classes
that satisfy the AMU Conjecture

@ Gave explicit examples in genus two. The first evidence for AMU
conjecture for genus > 1.
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Another approach: Growth of TV invariants and AMU

@ M compact, orientable 3-manifold with empty or toroidal boundary.

@ For r = odd and q = e we have the Turaev-Viro invariant

2mi

TVA(M) := TV/(M, e*). Let

LTV(M) = lim supzT7r log |[TV-:(M)|, ITV(M) = Iirnlinszﬂ log | TV:(M)].

r—oo

@ Remark. (Generalized) Chen-Yang Conjecture would assert
ITV(M) = LTV (M) = vie(||M]].

@ Weaker statement. /TV(M) > 0; exponential growth with respect to r:
For r >> 0, we have log |TVr(M)| > Br, for some B > 0.

@ Theorem A. (Detcherry-K., 2017) Let f € Mod(X) mapping class and let
M; be the mapping torus of f. If ITV(Ms) > 0, then f satisfies the AMU
conjecture.

@ Note. /TV(Ms) > 0 also implies that the mapping class f has PA part
(Next).
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ITV(M) > 0 implies ||[M|| >0

@ Theorem B. (Deicherry-K., 2017) There exists a universal constant
C > 0 such that for any compact orientable 3-manifold M with empty or
toroidal boundary we have

ITV(M) < LTV(M) < C||M||.

@ Computing /TV(M) is hard!
@ We don’t always have to compute /TV (M) to decide exponential growth!

@ Limits do not increase under Dehn filling.(Detcherry-K) If M is
obtained by Dehn filling from M’ then

ITV(M) < ITV(M') and LTV(M) < LTV(M).

@ Example. Adding components to a link preserves exponential growth of
TV invariants of link complement.
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An example: Knot 5, and parents

@ K(p)= 3-manifold obtained by p-surgery on M.
@ LTV(44(-5)) = Vol (41(—5)) ~ 0.9813688 > 0 [Ohtsuki, 2017]
@ Observe 5;(5) is homeomorphic to 41(—5).

@ Dehn filling result implies ITV(S® \ 52) > ITV(52(5)) = ITV(41(-5)) > 0
@ But Dehn filling result also implies that for any link containing 5, as a
component we have exponential growth
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Constructions and examples

@ Start with L ¢ S® be a link with ITV(S® < L) > 0.
@ (Stallings) We can add a component K so that K U L is a fibered link.

@ In fact, K U L will be a closed homogeneous braid and fiber is a Seifert
surface obtained from closed braid projection.
L L L

PSRRI T
K willli il

9

N Tk B

@ Refined Stallings process so that K U L is a hyperbolic and monodromy of
any fibration satisfies AMU Conjecture.

@ There are only finitely many f. m. link types in homogeneous closed
braids of fixed genus! Need to modify by appropriate Stallings twists.
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Stallings twists

@ c= a non-trivial s.c.c on the fiber with lk(c,c*) = 0, c* is the curve ¢
pushed along the positive normal of F. Assume ¢ not parallel | to 0F and
bound a disc in D ¢ S° that intersects F transversally:

@ A Stallings twist of order m: A full twist of order m along D.

@ The complement of the link L, , obtained from L , fibers over S' with fiber
F and the monodromy is f o 7/, where 7. is the Dehn-twist on F along c.

@ If f pseudo-Anosov , then the family {f o 7["}, contains infinitely many
pseudo-Anosov homeomorphisms.
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Concrete examples

@ Ki = 4;=closure of the alternating braid o, 'o10, 'o1. Have
ITV(S® < 44) > 0.

@ Let L= 4 components shown below; with 2m crossings in box.
ITV(S® L) > ITV(S®\ 44) > 0.

@ hyperbolic link (alternating) and fibered (homogeneous closed braid)
@ Fiber supports non-trivial Stallings twists. Genus of the fiber g = 3 + m.
Monodromies elements in Mod(X g 4).
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How many examples

@ We have many constructions of examples now. Recall

@ fundamental shadow links:

@ Universal: they produce all 3-manifolds with empty or toroidal boundary by
Dehn filling.
@ TV invariants of their complements have exponential growth (LTV > 0).

@ Let M denote the set of all 3-manifolds N that are complements of
fundamental shadow links in orientable 3-manifolds with empty or toroidal
boundary and their doubles DN.

@ All 3-manifolds contain fibered links. We have:

@ Theorem D. ( Belletti-Decherry-K- Yang ) Given M € M and a (possibly
empty) link L € M, there is a knot K € M such that the link KU L is
fibered in M. Furthermore, the monodromy of any fibration of M\ (KU L)
is a mapping class that satisfies the AMU Conjecture.

@ (Vague) Question. What mapping classes are realized by Theorem D?
How “big” is the set of mpc?
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TV Invariants as State sum on triangulations.

Quantum integer: r > 3 odd integer and g = .

n_ ~—n 2sin( 3
{n}:q”—q*”:zsin(@):25in(277r)[nlv where [n] = Cclq—j—‘ - 2sslinn((2}))'

Quantum factorial: {n}! = H{/}

Set of colors: I, = {0,2,4. r — 3} even integers less than r — 2.
Admissible Triple: (a;, a;, ak) of elements in Iy,

ai+a+ak<2(r—2), and

a a] + ak, a/ al + ak, ak a/ + aj

1
4 aj+aj—ax I gjitak—a; [ aitak—a; | 2
A(ar, &, ax) = ¢ <{ s i e

{ai+32j+ak =+ 1}!

2
where ¢, = 2sin(T7T).
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Admissible 6-tuple: (a1, ag, as, as, as, @) € I° each triple is dmisibble
Fi = (ai,a,a3), F2=(az, as4,86), F3=(ai1,as,8) and F4 = (a3, ay, as).

Tetrahedron colorings: Given an admissible 6-tuple:

ai+a+a ai+as+a
Faces: T, = 21+ %2+a TZZ%, To—.. and To— ...
Quadrilaterals:
a;+a+as+a ai+az+as+a a +as+ as + a
o =& > + a 5’02:1 sttt  qq T T

2 2 2

E. Kalfagianni (MSU) 18/24



Quantum 6j-symbol:  Given admissible 6-tuple
o= (a,a,a,a,8,a) € If,

oo & e (1Y (z+ 1)
a a a  NOX D ; ] 1)
¥ ° ° z=max{T1,T2,T3,T4} Hj:1 {Z - Tj}l Hk:1 {Ok — Z}l
where )
Afa) = (¢) (V=T AF),
i=1
and .
A= Z a;,
i=1
and
. 2m
(r = 2sm(7)_
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Colorings of Triangulations

Given a compact orientable 3-manifold M consider a triangulation = of M.
If OM £ () allow 7 to be a (partially) ideal triangulation: some vertices of the
tetrahedra are truncated and the truncated faces triangulate oM.

@ V=set of vertices of = which do not lie on OM.

@ E= set of interior edges (thus excluding edges coming from the truncation
of vertices).

@ Admissible coloring at level r: An assignment

c.:E— |

so that edges of each tetrahedron get an admissible 6-tuple.
@ Given a coloring ¢ and an edge e € E let

lele = (=1)"@[c(e) + 1].

@ For A atetrahedron in 7 let |A|; be the quantum 6j-symbol
corresponding to the admissible 6-tuple assigned to A by c.
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The invariant

@ A,(7)= the set of r-admissible colorings of 7
P 25in(27”)-
\/F
@ Turaev-Viro invariants as a state-sum over A, (7).
Theorem (Turaev-Viro 1990)

Let M be a compact, connected, orientable manifold closed or with boundary.
Let b> denote the second Z»-Betti number of M. Then the state sum

TVi(M) =201 2V 5™ TT felo T 14les 2)

ceA(r)ecE  Acr

is independent of the partially ideal triangulation T of M, and thus defines a
topological invariant of M.

@ 6j-sympols satisfy identities (Biedenharn-Elliot identity, Orthogonality
relation). These identities are used to show that state sum in 2 is invariant
under Pachner moves of triangulations of M. Thus invariant of M.
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TV invariants as part of a TQFT

Witten-Reshetikhin-Turaev TQFT/ Blanchet-Habegger-Masbaum-Vogel.
Forr>3and( = eiT“, we have a TQFT functor RT,:
M-=closed, oriented 3-manifold RT,(M)=C-valued invariant.
Y =compact, oriented surface, w. coloring ¢ of 9%,
RT.(X,c) = f.d. C —vector space.
@ M=cobordism with OM = —%¥y U ¥4, there is a map
RT,(M) € End(RT,(Zo), RT,(X1)).

@ RT, takes composition of cobordisms to composition of linear maps.
@ We have a f.d. projective representation:

pr: Mod(X) — End(RT,(X, ¢)).

o If 9 = 0, and Cy=mapping cylinder of f,
pr(f) = RT(Cy).

@ If 9% # () we color X with elements of U,. To define p, . need RT, for
cobordisms w. colored tangles.
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Proof of Theorem A

@ Using work of Roberts, Walker, Benediti-Pertronio and TQFT properties
we get

TV (M) = Z|Trp,7c(f)|2,
c
where the sum ranges over all colorings of the boundary components of
M;s by elements of U,.

@ Since ITV(My) > 0, the sequence {TV,(Ms)}, is bounded below by a
sequence that is exponentially growing in r as r — oc.

@ The sequence ) dim(RT,(X, ¢)) only grows polynomially in r. In fact,
c
dim(RT,(Xg,n, C)) < r39-3+n,
@ r, there will be at least one ¢ such that |Trp, ¢(f)| > dim(RT.(%, ¢)).

@ Then p, ¢(f) must have an eigenvalue of modulus 1. Thus it has infinite
order.
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Mapping Tori: Integer and non integer values of TV,

@ (D-K) Let M; be the mapping torus of a periodic mapping class
f € Mod(X) of order N. Then, for any odd integer r > 3, with
ged(r, N) = 1, we have TV,(My) € Z, for any choice of root of unity.

@ In particular: TV,(Ms) € Z, for infinitely many r.

@ If ITV(M) > 0 at some root of unity, then there can be at most finitely
many values r for which TV.(M) € Z.

@ Conjecture. Suppose that f € Mod(X) contains a PA part. Then, there
can be at most finitely many odd integers r such that TV.(M) € Z.
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@ In particular: TV,(Ms) € Z, for infinitely many r.
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THANK YOU!
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