Operations on limits. Some general combination rules make most limit computations routine. Suppose we know that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist. Then we have the Limit Laws:

- Sum: $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$.
- Difference: $\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$.
- Constant Multiple: $\lim _{x \rightarrow a}(c f(x))=c \lim _{x \rightarrow a} f(x)$, for a constant c.
- Product: $\lim _{x \rightarrow a} f(x) g(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$.
- Quotient: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$, provided $\lim _{x \rightarrow a} g(x) \neq 0$.
- Power: $\lim _{x \rightarrow a} f(x)^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}$, for a whole number n.
- Root: $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$, for a whole number* n.

These all have the form: "The limit of an operation equals the operation applied to the limits." These Laws are also valid for one-sided limits.

Limits by plugging in. Assuming the Limit Laws and the Basic Limits $\lim _{x \rightarrow a} x=a$ and $\lim _{x \rightarrow a} c=c$, we can prove that most functions are continuous, meaning the $\lim _{x \rightarrow a} f(x)$ is obtained by substituting $x=a$ to get $f(a)$. For example, we can formally compute the limit:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{1-\sqrt{x}}{1+x} & =\frac{\lim _{x \rightarrow 2} 1-\sqrt{x}}{\lim _{x \rightarrow 2} 1+x} & & \text { by the Quotient Law }{ }^{\dagger} \\
& =\frac{\lim _{x \rightarrow 2} 1-\lim _{x \rightarrow 2} \sqrt{x}}{\lim _{x \rightarrow 2} 1+\lim _{x \rightarrow 2} x} & & \text { by the Sum and Difference Laws } \\
& =\frac{\lim _{x \rightarrow 2} 1-\sqrt{\lim _{x \rightarrow 2} x}}{\lim _{x \rightarrow 2} 1+\lim _{x \rightarrow 2} x} & & \text { by the Root Law } \\
& =\frac{1-\sqrt{2}}{1+2}=\frac{1-\sqrt{2}}{3} & & \text { by the Basic Limits. }
\end{aligned}
$$

[^0]That is, the correct limit would be obtained just by substituting $x=2$. In general, substituting $x=a$ gives the correct limit unless it leads to a meaningless expression like $\frac{0}{0}$ or $\sqrt{-1}$ (we do not consider imaginary numbers in this course). In Notes $\S 2.4$, we will show that trigonometric functions like $\sin (x)$ and $\tan (x)$ are also continuous when defined, and the same for functions like 2^{x} and $\log (x)$, so this principle works for pretty much all formulas.

Limits by canceling zeroes. As we have seen, the most important limits are those for which substitution gives the meaningless expression $\frac{0}{0}$. To compute these, we must cancel vanishing factors from the top and bottom, until we get an expression which can be evaluated by the Laws. This often requires factoring, for example:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{2}-x-2}=\lim _{x \rightarrow 2} \frac{(x-2)^{2}}{(x-2)(x+1)}=\lim _{x \rightarrow 2} \frac{x-2}{x+1},
$$

which can be evaluated by substituting $x=2$. Another trick to avoid $\frac{0}{0}$ is to multiply by a conjugate radical to eliminate square roots:

$$
\begin{aligned}
& \lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}=\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3} \cdot \frac{\sqrt{x}+3}{\sqrt{x}+3}=\lim _{x \rightarrow 9} \frac{(x-9)(\sqrt{x}+3)}{(\sqrt{x})^{2}-3^{2}} \\
& \quad=\lim _{x \rightarrow 9} \frac{(x-9)(\sqrt{x}+3)}{x-9}=\lim _{x \rightarrow 9} \sqrt{x}+3=\sqrt{9}+3=6 .
\end{aligned}
$$

Limits by cases. A familiar function defined by cases is the absolute value: $|x|=x$ for $x \geq 0$, and $|x|=-x$ for $x<0$. To evaluate limits involving such functions, we must consider these cases separately. For example, compute:

$$
\lim _{x \rightarrow 2} \frac{\left|x^{2}-4\right|}{x-2} .
$$

The function is not continuous: plugging in $x=2$ gives $\frac{0}{0}$. Rather, we must examine the cases where $x<2$ and $x>2$. In the first case, we deduce: ${ }^{\dagger}$

$$
x<2 \Longrightarrow x^{2}<4 \Longrightarrow x^{2}-4<0 \Longrightarrow\left|x^{2}-4\right|=-\left(x^{2}-4\right) .
$$

Thus, we have the left limit:
$\lim _{x \rightarrow 2^{-}} \frac{\left|x^{2}-4\right|}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{-\left(x^{2}-4\right)}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{-(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2^{-}}-(x+2)=-4$.
We can check this by plugging in values like $x=1.9,1.99, \ldots$, getting $\frac{\left|x^{2}-4\right|}{x-2}=-3.9,-3.99, \ldots \rightarrow-4$.

Reasoning similarly, we find $\lim _{x \rightarrow 2^{+}} \frac{\left|x^{2}-4\right|}{x-2}=\lim _{x \rightarrow 2^{+}}(x+2)=4$. Since the one-sided limits disagree, the two-sided limit does not exist.

[^1]Limits by squeezing. Some limits $\lim _{x \rightarrow a} f(x)$ are difficult to evaluate because $f(x)$ behaves erratically near $x=a$. For example:

$$
\lim _{x \rightarrow 1} x+4(x-1)^{2} \sin \left(\frac{1}{x-1}\right) .
$$

The graph shows the weirdness, oscillating faster and faster near $x=1$ because $\sin (\theta)$ goes through infinitely many periods as $\theta=\frac{1}{x-1}$ becomes larger.

But however complicated this behavior, we know $-1 \leq \sin (\theta) \leq 1$ for any θ, so our function has simple lower and upper bounds (floor and ceiling):

$$
x-4(x-1)^{2} \leq x+4(x-1)^{2} \sin \left(\frac{1}{x-1}\right) \leq x+4(x-1)^{2} .
$$

Since our function lies between these bounds, so does its limit, if it exists:
$1=\lim _{x \rightarrow 1} x-4(x-1)^{2} \leq \lim _{x \rightarrow 1} x+4(x-1)^{2} \sin \left(\frac{1}{x-1}\right) \leq \lim _{x \rightarrow 1} x+4(x-1)^{2}=1$.
But the floor and ceiling both approach the limit $L=1$, so our function is squeezed toward this same value:

$$
\lim _{x \rightarrow 1} x+4(x-1)^{2} \sin \left(\frac{1}{x-1}\right)=1 .
$$

This reasoning is formalized in the following theorem.
Squeeze Theorem: Suppose $g(x) \leq f(x) \leq h(x)$ for all x near a (except possibly $x=a$), and $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L$.
Then $\lim _{x \rightarrow a} f(x)=L$.

[^0]: Notes by Peter Magyar magyar@math.msu.edu
 *If n is even, we assume $\lim _{x \rightarrow a} f(x)>0$.
 ${ }^{\dagger}$ The Quotient Law requires that the denominator have a non-zero limit. We tentatively proceed with the computation and find the denominator to be 3 , which retrospectively justifies the quotient step.

[^1]: ${ }^{\dagger}$ The symbol $A \Longrightarrow B$ means "statement A logically implies statement B ".

