
Math 132 Limit Laws Stewart §1.6

Operations on limits. Some general combination rules make most limit
computations routine. Suppose we know that limx→a f(x) and limx→a g(x)
exist. Then we have the Limit Laws:

• Sum: limx→a (f(x) + g(x)) = limx→a f(x) + limx→a g(x).

• Difference: limx→a (f(x)− g(x)) = limx→a f(x) − limx→a g(x).

• Constant Multiple: limx→a (c f(x)) = c limx→a f(x), for a constant c.

• Product: limx→a f(x)g(x) = limx→a f(x) · limx→a g(x).

• Quotient: limx→a
f(x)
g(x) = limx→a f(x)

limx→a g(x) , provided limx→a g(x) 6= 0.

• Power: limx→a f(x)n = (limx→a f(x))n, for a whole number n.

• Root: limx→a
n
√
f(x) = n

√
limx→a f(x), for a whole number∗ n.

These all have the form: “The limit of an operation equals the operation
applied to the limits.” These Laws are also valid for one-sided limits.

Limits by plugging in. Assuming the Limit Laws and the Basic Limits
limx→a x = a and limx→a c = c, we can prove that most functions are
continuous, meaning the limx→a f(x) is obtained by substituting x = a to
get f(a). For example, we can formally compute the limit:

lim
x→2

1−
√
x

1 + x
=

lim
x→2

1−
√
x

lim
x→2

1 + x
by the Quotient Law†

=
lim
x→2

1− lim
x→2

√
x

lim
x→2

1 + lim
x→2

x
by the Sum and Difference Laws

=
lim
x→2

1−
√

lim
x→2

x

lim
x→2

1 + lim
x→2

x
by the Root Law

=
1−
√

2

1 + 2
=

1−
√

2

3
by the Basic Limits.
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∗If n is even, we assume limx→a f(x) > 0.
†The Quotient Law requires that the denominator have a non-zero limit. We tentatively

proceed with the computation and find the denominator to be 3, which retrospectively
justifies the quotient step.



That is, the correct limit would be obtained just by substituting x = 2. In
general, substituting x = a gives the correct limit unless it leads to a mean-
ingless expression like 0

0 or
√
−1 (we do not consider imaginary numbers in

this course). In Notes §2.4, we will show that trigonometric functions like
sin(x) and tan(x) are also continuous when defined, and the same for func-
tions like 2x and log(x), so this principle works for pretty much all formulas.

Limits by canceling zeroes. As we have seen, the most important lim-
its are those for which substitution gives the meaningless expression 0

0 . To
compute these, we must cancel vanishing factors from the top and bottom,
until we get an expression which can be evaluated by the Laws. This often
requires factoring, for example:

lim
x→2

x2 − 4x+ 4

x2 − x− 2
= lim

x→2

(x−2)2

(x−2)(x+1)
= lim

x→2

x−2

x+1
,

which can be evaluated by substituting x = 2. Another trick to avoid 0
0 is

to multiply by a conjugate radical to eliminate square roots:

lim
x→9

x−9√
x−3

= lim
x→9

x−9√
x−3

·
√
x+3√
x+3

= lim
x→9

(x−9)(
√
x+3)

(
√
x)2 − 32

= lim
x→9

(x−9)(
√
x+3)

x− 9
= lim

x→9

√
x+ 3 =

√
9 + 3 = 6.

Limits by cases. A familiar function defined by cases is the absolute value:
|x| = x for x ≥ 0, and |x| = −x for x < 0. To evaluate limits involving such
functions, we must consider these cases separately. For example, compute:

lim
x→2

|x2−4|
x− 2

.

The function is not continuous: plugging in x = 2 gives 0
0 . Rather, we must

examine the cases where x < 2 and x > 2. In the first case, we deduce:†

x < 2 =⇒ x2 < 4 =⇒ x2−4 < 0 =⇒ |x2−4| = −(x2−4).

Thus, we have the left limit:

lim
x→2−

|x2−4|
x− 2

= lim
x→2−

−(x2−4)

x− 2
= lim

x→2−

−(x−2)(x+2)

x− 2
= lim

x→2−
−(x+2) = −4.

We can check this by plugging in values like x = 1.9, 1.99, . . . , getting
|x2−4|
x−2 = −3.9, −3.99, . . .→ −4.

Reasoning similarly, we find limx→2+
|x2−4|
x−2 = limx→2+(x+2) = 4. Since

the one-sided limits disagree, the two-sided limit does not exist.

†The symbol A =⇒ B means “statement A logically implies statement B”.



Limits by squeezing. Some limits limx→a f(x) are difficult to evaluate
because f(x) behaves erratically near x = a. For example:

lim
x→1

x+ 4(x−1)2 sin( 1
x−1).

The graph shows the weirdness, oscillating faster and faster near x = 1 be-
cause sin(θ) goes through infinitely many periods as θ = 1

x−1 becomes larger.

But however complicated this behavior, we know −1 ≤ sin(θ) ≤ 1 for any
θ, so our function has simple lower and upper bounds (floor and ceiling):

x− 4(x−1)2 ≤ x+ 4(x−1)2 sin( 1
x−1) ≤ x+ 4(x−1)2.

Since our function lies between these bounds, so does its limit, if it exists:

1 = lim
x→1

x−4(x−1)2 ≤ lim
x→1

x+4(x−1)2 sin( 1
x−1) ≤ lim

x→1
x+4(x−1)2 = 1.

But the floor and ceiling both approach the limit L = 1, so our function is
squeezed toward this same value:

lim
x→1

x+ 4(x−1)2 sin( 1
x−1) = 1.

This reasoning is formalized in the following theorem.

Squeeze Theorem: Suppose g(x) ≤ f(x) ≤ h(x) for all x near
a (except possibly x = a), and limx→a g(x) = limx→a h(x) = L.
Then limx→a f(x) = L.


