Math 132

Why do we need limits? Because we cannot directly evaluate important quantities like instantaneous velocity or tangent slope, but we can approximate them with arbitrary accuracy. A limit pinpoints the exact value within this cloud of approximations. In this section, we get to the logical core of this concept.

For example, consider the tangent line of $y = x^2$ at x = 1, approximated by the secant through (1,1) and a nearby point (x,x^2) , giving the slope: $f(x) = \frac{x^2-1}{x-1}$. There is no defined value for f(1), but as x gets very close to 1, we expect the approximations f(x) to have the exact tangent slope as their "limiting value", $\lim_{x\to 1} f(x) = L$. This means a candidate value Lis the correct value if we can force f(x) as close as desired to L (within an error $\varepsilon = \frac{1}{10}$, or $\frac{1}{100}$, or $\frac{1}{1,000,000}$, or any possible $\varepsilon > 0$), provided we restrict x close enough to 1.

Thus, proving a limit is an *error-control problem* of a type we see in the real world. For example, how accurately must you set the angle of your tennis racket to land the ball within one foot of a given spot (or within one inch)? In the general situation, an input setting x produces an output f(x): how accurate must the input be to ensure a tolerable output error? That is, what allowed difference δ of x from a will force an error less than ε of f(x) from L?*

In the graph y = f(x), we take the small red piece between the vertical lines $a - \delta < x < a + \delta$ (not including x = a). By setting δ small enough, we try to force this piece between the fixed horizontal lines $L - \varepsilon < y < L + \varepsilon$, for the specified output error ε .

Rewriting $a-\delta < x < a+\delta$ as $|x-a| < \delta$, and $L-\varepsilon < f(x) < L+\varepsilon$ as $|f(x) - L| < \varepsilon$, we get the formal definition of a limit:

Notes by Peter Magyar magyar@math.msu.edu

^{*}Here δ (delta) is a Greek letter d, standing for "difference", and ε (epsilon) is Greek e, standing for "error".

Definition: $\lim_{x\to a} f(x) = L$ means that for any output error tolerance $\varepsilon > 0$, there is an input accuracy $\delta > 0$ such that $0 < |x - a| < \delta$ forces $|f(x) - L| < \varepsilon$.

We can define one-sided and infinite limits similarly.[†]

Proof of Individual Limits. The precise definition allows us to rigorously prove facts about limits: specific limit computatons, as well as the general Limit Laws, which can then be applied instead of case-by-case proofs.

EXAMPLE: We prove that $\lim_{x\to 5} (3x-2) = 3(5)-2 = 13$. We treat the desired error tolerance ε as a variable, and we want to guarantee the output error $|f(x) - L| < \varepsilon$, or equivalently $-\varepsilon < f(x) - L < \varepsilon$. We write this out and solve the inequalities for x:

$$\begin{aligned} -\varepsilon < (3x-2) - 13 < \varepsilon &\iff 15 - \varepsilon < 3x < 15 + \varepsilon \\ &\iff \frac{1}{3}(15-\varepsilon) < x < \frac{1}{3}(15+\varepsilon) &\iff 5 - \frac{1}{3}\varepsilon < x < 5 + \frac{1}{3}\varepsilon \end{aligned}$$

(Here \iff means "is logically equivalent to".) Finally, we put this in terms of the input accuracy x - a = x - 5:

$$-\frac{1}{3}\varepsilon < x - 5 < \frac{1}{3}\varepsilon.$$

To force this, we are allowed to set any input accuracy $|x - a| < \delta$, or $-\delta < x - a < \delta$. Evidently, $\delta = \frac{1}{3}\varepsilon$ will work.[‡]

EXAMPLE: A harder error-control problem: $\lim_{x\to 3} \sqrt{x} = \sqrt{3}$. We translate the output accuracy requirement $-\varepsilon < f(x) - L < \varepsilon$ into inequalities bounding the input accuracy x - a. (Here x is a positive value close to 3, and we take any small error tolerance $1 > \varepsilon > 0$.)

$$\begin{aligned} -\varepsilon < \sqrt{x} - \sqrt{3} < \varepsilon & \iff & \sqrt{3} - \varepsilon < \sqrt{x} < \sqrt{3} + \varepsilon \\ & \iff & \sqrt{3}^2 - 2\varepsilon\sqrt{3} + \varepsilon^2 < x < \sqrt{3}^2 + 2\varepsilon\sqrt{3} + \varepsilon^2 \\ & \iff & -2\varepsilon\sqrt{3} + \varepsilon^2 < x - 3 < 2\varepsilon\sqrt{3} + \varepsilon^2 \end{aligned}$$

We need an input accuracy δ which guarantees the last inequalities above: In general, to guarantee a desired equality of the form $-d_1 < x - a < d_2$, we

$$3|x-5| < 3\delta = \varepsilon \quad \Longrightarrow \quad |3x-15| < \varepsilon \quad \Longrightarrow \quad |(3x-2)-13| < \varepsilon,$$

which is our desired conclusion $|f(x) - L| < \varepsilon$. (Here \implies means "logically implies".)

[†]lim_{$x\to a^+$} f(x) = L means that for any $\varepsilon > 0$, there is some $\delta > 0$ such that $0 < x-a < \delta$ implies $|f(x) - L| < \varepsilon$; and $\lim_{x\to a} f(x) = \infty$ means that for any bound *B*, there is some $\delta > 0$ such that $0 < |x - a| < \delta$ implies f(x) > B.

[‡]For the formal proof, we must reverse this logic, and show that the given input accuracy guarantees the desired output accuracy. Given any desired $\varepsilon > 0$, we define $\delta = \frac{1}{3}\varepsilon$, and assume $|x - 5| < \delta$. Then we have:

choose δ to be the smaller of d_1 and d_2 . Thus we take $\delta = 2\varepsilon\sqrt{3} - \varepsilon^2$. Then $-\delta < x-3$ is equivalent to the desired lower bound $-2\varepsilon\sqrt{3} + \varepsilon^2 < x-3$; and also $x-3 < \delta$ implies the desired upper bound, since:

$$\delta = 2\varepsilon\sqrt{3} - \varepsilon^2 < 2\varepsilon\sqrt{3} + \varepsilon^2.$$

Note: In evaluating limits, we almost always rely on the Limit Laws and other general theorems, without a specific error analysis. The general results guarantee that the error approaches zero, and this is all we need.

Proof of Limit Theorems. All the general Limit Laws of §1.6 can be rigorously proved by error-control analysis. We prove the simplest one:

Sum Law: If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then: $\lim_{x\to a} (f(x) + g(x)) = L + M.$

Proof. Consider any $\varepsilon > 0$. Since we assume $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, we can require the error tolerance $\frac{1}{2}\varepsilon$ for these limits, getting $\delta > 0$ small enough that $0 < |x - a| < \delta$ forces:

$$-\frac{1}{2}\varepsilon < f(x) - L < \frac{1}{2}\varepsilon$$
 and $-\frac{1}{2}\varepsilon < g(x) - M < \frac{1}{2}\varepsilon$.

Adding these inequalities, we find that $0 < |x - a| < \delta$ also forces:

$$-\frac{1}{2}\varepsilon - \frac{1}{2}\varepsilon < (f(x) - L) + (g(x) - M) < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon$$

Rewriting, this is just $-\varepsilon < (f(x)+g(x)) - (L+M) < \varepsilon$, which is the desired output error bound.

Squeeze Theorem: If
$$f(x) < g(x) < h(x)$$
 for all values of x near a (except perhaps $x = a$), and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$.

Proof. Consider any $\varepsilon > 0$. Since we assume $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} h(x) = L$, we can find a $\delta > 0$ such that $0 < |x-a| < \delta$ forces $-\varepsilon < f(x) - L < \varepsilon$ and $-\varepsilon < g(x) - L < \varepsilon$. We also know f(x) < g(x) < h(x) provided $|x-a| < \delta$ restricts x close enough to a, so:

$$f(x) - L < g(x) - L < h(x) - L.$$

Then $0 < |x - a| < \delta$ also forces:

$$-\varepsilon < f(x) - L < g(x) - L$$
 and $g(x) - L < h(x) - L < \varepsilon$

which gives the desired output accuracy for g(x).

Substitution Theorem: If $\lim_{x\to b} f(x) = L$ and $\lim_{x\to a} g(x) = b$, and $g(x) \neq b$ for all x close enough to (but unequal to) a, then $\lim_{x\to a} f(g(x)) = L$.

Proof. For any $\varepsilon > 0$, we must find a number $\delta > 0$ such that $0 < |x-a| < \delta$ forces $|f(g(x)) - L| < \varepsilon$.

Take any $\varepsilon > 0$. Since $\lim_{x\to b} f(x) = L$, there is $\delta_1 > 0$ such that $0 < |y-b| < \delta_1$ forces $|f(y) - L| < \varepsilon$. Also, since $\lim_{x\to a} g(x) = b$, there exists $\delta_2 > 0$ such that $0 < |x-a| < \delta_2$ forces $|g(x) - b| < \delta_1$. Now take $\delta < \delta_2$, and δ small enough that $0 < |x-a| < \delta$ forces $g(x) \neq b$. Then we know $|x-a| < \delta$ forces $0 < |g(x) - b| < \delta_1$, which in turn forces $|f(g(x)) - L| < \varepsilon$, as required.