Why do we need limits? Because we cannot directly evaluate important quantities like instantaneous velocity or tangent slope, but we can approximate them with arbitrary accuracy. A limit pinpoints the exact value within this cloud of approximations. In this section, we get to the logical core of this concept.

For example, consider the tangent line of $y=x^{2}$ at $x=1$, approximated by the secant through $(1,1)$ and a nearby point $\left(x, x^{2}\right)$, giving the slope: $f(x)=\frac{x^{2}-1}{x-1}$. There is no defined value for $f(1)$, but as x gets very close to 1 , we expect the approximations $f(x)$ to have the exact tangent slope as their "limiting value", $\lim _{x \rightarrow 1} f(x)=L$. This means a candidate value L is the correct value if we can force $f(x)$ as close as desired to L (within an error $\varepsilon=\frac{1}{10}$, or $\frac{1}{100}$, or $\frac{1}{1,000,000}$, or any possible $\varepsilon>0$), provided we restrict x close enough to 1 .

Thus, proving a limit is an error-control problem of a type we see in the real world. For example, how accurately must you set the angle of your tennis racket to land the ball within one foot of a given spot (or within one inch)? In the general situation, an input setting x produces an output $f(x)$: how accurate must the input be to ensure a tolerable output error? That is, what allowed difference δ of x from a will force an error less than ε of $f(x)$ from L ?*

In the graph $y=f(x)$, we take the small red piece between the vertical lines $a-\delta<x<a+\delta$ (not including $x=a$). By setting δ small enough, we try to force this piece between the fixed horizontal lines $L-\varepsilon<y<L+\varepsilon$, for the specified output error ε.

Rewriting $a-\delta<x<a+\delta$ as $|x-a|<\delta$, and $L-\varepsilon<f(x)<L+\varepsilon$ as $|f(x)-L|<\varepsilon$, we get the formal definition of a limit:

[^0]Definition: $\lim _{x \rightarrow a} f(x)=L$ means that for any output error tolerance $\varepsilon>0$, there is an input accuracy $\delta>0$ such that $0<|x-a|<\delta$ forces $|f(x)-L|<\varepsilon$.

We can define one-sided and infinte limits similarly. ${ }^{\dagger}$
Proof of Individual Limits. The precise definition allows us to rigorously prove facts about limits: specific limit computatons, as well as the general Limit Laws, which can then be applied instead of case-by-case proofs.

EXAMPLE: We prove that $\lim _{x \rightarrow 5}(3 x-2)=3(5)-2=13$. We treat the desired error tolerance ε as a variable, and we want to guarantee the output error $|f(x)-L|<\varepsilon$, or equivalently $-\varepsilon<f(x)-L<\varepsilon$. We write this out and solve the inequalities for x :

$$
\begin{aligned}
-\varepsilon<(3 x-2)-13<\varepsilon & \Longleftrightarrow 15-\varepsilon<3 x<15+\varepsilon \\
& \Longleftrightarrow \frac{1}{3}(15-\varepsilon)<x<\frac{1}{3}(15+\varepsilon)
\end{aligned} \Longleftrightarrow \quad 5-\frac{1}{3} \varepsilon<x<5+\frac{1}{3} \varepsilon .
$$

(Here \Longleftrightarrow means "is logically equivalent to".) Finally, we put this in terms of the input accuracy $x-a=x-5$:

$$
-\frac{1}{3} \varepsilon<x-5<\frac{1}{3} \varepsilon
$$

To force this, we are allowed to set any input accuracy $|x-a|<\delta$, or $-\delta<x-a<\delta$. Evidently, $\delta=\frac{1}{3} \varepsilon$ will work. ${ }^{\ddagger}$

EXAMPLE: A harder error-control problem: $\lim _{x \rightarrow 3} \sqrt{x}=\sqrt{3}$. We translate the output accuracy requirement $-\varepsilon<f(x)-L<\varepsilon$ into inequalities bounding the input accuracy $x-a$. (Here x is a positive value close to 3 , and we take any small error tolerance $1>\varepsilon>0$.)

$$
\begin{aligned}
-\varepsilon<\sqrt{x}-\sqrt{3}<\varepsilon & \Longleftrightarrow & \sqrt{3}-\varepsilon<\sqrt{x}<\sqrt{3}+\varepsilon \\
& \Longleftrightarrow & \sqrt{3}^{2}-2 \varepsilon \sqrt{3}+\varepsilon^{2}<x<\sqrt{3}^{2}+2 \varepsilon \sqrt{3}+\varepsilon^{2} \\
& \Longleftrightarrow & -2 \varepsilon \sqrt{3}+\varepsilon^{2}<x-3<2 \varepsilon \sqrt{3}+\varepsilon^{2}
\end{aligned}
$$

We need an input accuracy δ which guarantees the last inequalities above: In general, to guarantee a desired equality of the form $-d_{1}<x-a<d_{2}$, we

[^1]which is our desired conclusion $|f(x)-L|<\varepsilon$. (Here \Longrightarrow means "logically implies".)
choose δ to be the smaller of d_{1} and d_{2}. Thus we take $\delta=2 \varepsilon \sqrt{3}-\varepsilon^{2}$. Then $-\delta<x-3$ is equivalent to the desired lower bound $-2 \varepsilon \sqrt{3}+\varepsilon^{2}<x-3$; and also $x-3<\delta$ implies the desired upper bound, since:
$$
\delta=2 \varepsilon \sqrt{3}-\varepsilon^{2}<2 \varepsilon \sqrt{3}+\varepsilon^{2}
$$

Note: In evaluating limits, we almost always rely on the Limit Laws and other general theorems, without a specific error analysis. The general results guarantee that the error approaches zero, and this is all we need.

Proof of Limit Theorems. All the general Limit Laws of $\S 1.6$ can be rigorously proved by error-control analysis. We prove the simplest one:

Sum Law: If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then:

$$
\lim _{x \rightarrow a}(f(x)+g(x))=L+M
$$

Proof. Consider any $\varepsilon>0$. Since we assume $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=$ M, we can require the error tolerance $\frac{1}{2} \varepsilon$ for these limits, getting $\delta>0$ small enough that $0<|x-a|<\delta$ forces:

$$
-\frac{1}{2} \varepsilon<f(x)-L<\frac{1}{2} \varepsilon \quad \text { and } \quad-\frac{1}{2} \varepsilon<g(x)-M<\frac{1}{2} \varepsilon
$$

Adding these inequalities, we find that $0<|x-a|<\delta$ also forces:

$$
-\frac{1}{2} \varepsilon-\frac{1}{2} \varepsilon<(f(x)-L)+(g(x)-M)<\frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon
$$

Rewriting, this is just $-\varepsilon<(f(x)+g(x))-(L+M)<\varepsilon$, which is the desired output error bound.

Squeeze Theorem: If $f(x)<g(x)<h(x)$ for all values of x near a (except perhaps $x=a$), and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$.

Proof. Consider any $\varepsilon>0$. Since we assume $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} h(x)=$ L, we can find a $\delta>0$ such that $0<|x-a|<\delta$ forces $-\varepsilon<f(x)-L<\varepsilon$ and $-\varepsilon<g(x)-L<\varepsilon$. We also know $f(x)<g(x)<h(x)$ provided $|x-a|<\delta$ restricts x close enough to a, so:

$$
f(x)-L<g(x)-L<h(x)-L
$$

Then $0<|x-a|<\delta$ also forces:

$$
-\varepsilon<f(x)-L<g(x)-L \quad \text { and } \quad g(x)-L<h(x)-L<\varepsilon
$$

which gives the desired output accuracy for $g(x)$.

Substitution Theorem: If $\lim _{x \rightarrow b} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=b$, and $g(x) \neq b$ for all x close enough to (but unequal to) a, then $\lim _{x \rightarrow a} f(g(x))=L$. Proof. For any $\varepsilon>0$, we must find a number $\delta>0$ such that $0<|x-a|<\delta$ forces $|f(g(x))-L|<\varepsilon$.

Take any $\varepsilon>0$. Since $\lim _{x \rightarrow b} f(x)=L$, there is $\delta_{1}>0$ such that $0<|y-b|<\delta_{1}$ forces $|f(y)-L|<\varepsilon$. Also, since $\lim _{x \rightarrow a} g(x)=b$, there exists $\delta_{2}>0$ such that $0<|x-a|<\delta_{2}$ forces $|g(x)-b|<\delta_{1}$. Now take $\delta<\delta_{2}$, and δ small enough that $0<|x-a|<\delta$ forces $g(x) \neq b$. Then we know $|x-a|<\delta$ forces $0<|g(x)-b|<\delta_{1}$, which in turn forces $|f(g(x))-L|<\varepsilon$, as required.

[^0]: Notes by Peter Magyar magyar@math.msu.edu
 ${ }^{*}$ Here δ (delta) is a Greek letter d, standing for "difference", and ε (epsilon) is Greek e, standing for "error".

[^1]: ${ }^{\dagger} \lim _{x \rightarrow a^{+}} f(x)=L$ means that for any $\varepsilon>0$, there is some $\delta>0$ such that $0<x-a<\delta$ implies $|f(x)-L|<\varepsilon$; and $\lim _{x \rightarrow a} f(x)=\infty$ means that for any bound B, there is some $\delta>0$ such that $0<|x-a|<\delta$ implies $f(x)>B$.
 ${ }^{\ddagger}$ For the formal proof, we must reverse this logic, and show that the given input accuracy guarantees the desired output accuracy. Given any desired $\varepsilon>0$, we define $\delta=\frac{1}{3} \varepsilon$, and assume $|x-5|<\delta$. Then we have:

 $$
 3|x-5|<3 \delta=\varepsilon \quad \Longrightarrow \quad|3 x-15|<\varepsilon \quad \Longrightarrow \quad|(3 x-2)-13|<\varepsilon
 $$

