
Math 132 Limit Definition Stewart §1.7

Why do we need limits? Because we cannot directly evaluate important
quantities like instantaneous velocity or tangent slope, but we can approxi-
mate them with arbitrary accuracy. A limit pinpoints the exact value within
this cloud of approximations. In this section, we get to the logical core of
this concept.

For example, consider the tangent line of y = x2 at x = 1, approximated
by the secant through (1, 1) and a nearby point (x, x2), giving the slope:

f(x) = x2−1
x−1 . There is no defined value for f(1), but as x gets very close

to 1, we expect the approximations f(x) to have the exact tangent slope as
their “limiting value”, limx→1 f(x) = L. This means a candidate value L
is the correct value if we can force f(x) as close as desired to L (within an
error ε = 1

10 , or 1
100 , or 1

1,000,000 , or any possible ε > 0), provided we restrict
x close enough to 1.

Thus, proving a limit is an error-control problem of a type we see in the
real world. For example, how accurately must you set the angle of your
tennis racket to land the ball within one foot of a given spot (or within one
inch)? In the general situation, an input setting x produces an output f(x):
how accurate must the input be to ensure a tolerable output error? That is,
what allowed difference δ of x from a will force an error less than ε of f(x)
from L?∗

In the graph y = f(x), we take the small red piece between the vertical lines
a− δ < x < a+ δ (not including x = a). By setting δ small enough, we try
to force this piece between the fixed horizontal lines L− ε < y < L+ ε, for
the specified output error ε.

Rewriting a−δ < x < a+δ as |x − a| < δ, and L−ε < f(x) < L+ε as
|f(x)− L| < ε, we get the formal definition of a limit:
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∗Here δ (delta) is a Greek letter d, standing for “difference”, and ε (epsilon) is Greek e,

standing for “error”.



Definition: limx→a f(x) = L means that for any output error
tolerance ε > 0, there is an input accuracy δ > 0 such that
0 < |x− a| < δ forces |f(x)− L| < ε.

We can define one-sided and infinte limits similarly.†

Proof of Individual Limits. The precise definition allows us to rigorously
prove facts about limits: specific limit computatons, as well as the general
Limit Laws, which can then be applied instead of case-by-case proofs.

example: We prove that limx→5 (3x−2) = 3(5)−2 = 13. We treat the
desired error tolerance ε as a variable, and we want to guarantee the output
error |f(x)− L| < ε, or equivalently −ε < f(x)− L < ε. We write this out
and solve the inequalities for x:

−ε < (3x−2)− 13 < ε ⇐⇒ 15− ε < 3x < 15 + ε

⇐⇒ 1
3(15−ε) < x < 1

3(15+ε) ⇐⇒ 5− 1
3ε < x < 5+ 1

3ε.

(Here ⇐⇒ means “is logically equivalent to”.) Finally, we put this in terms
of the input accuracy x− a = x− 5:

−1
3ε < x− 5 < 1

3ε.

To force this, we are allowed to set any input accuracy |x − a| < δ, or
−δ < x− a < δ. Evidently, δ = 1

3ε will work.‡

example: A harder error-control problem: limx→3
√
x =

√
3. We trans-

late the output accuracy requirement −ε < f(x) − L < ε into inequalities
bounding the input accuracy x − a. (Here x is a positive value close to 3,
and we take any small error tolerance 1 > ε > 0.)

−ε <
√
x−
√

3 < ε ⇐⇒
√

3− ε <
√
x <

√
3 + ε

⇐⇒
√

3
2 − 2ε

√
3 + ε2 < x <

√
3
2

+ 2ε
√

3 + ε2

⇐⇒ −2ε
√

3 + ε2 < x−3 < 2ε
√

3 + ε2

We need an input accuracy δ which guarantees the last inequalities above:
In general, to guarantee a desired equality of the form −d1 < x−a < d2, we

†limx→a+ f(x) = Lmeans that for any ε > 0, there is some δ > 0 such that 0 < x−a < δ
implies |f(x)− L| < ε; and limx→a f(x) =∞ means that for any bound B, there is some
δ > 0 such that 0 < |x− a| < δ implies f(x) > B.
‡For the formal proof, we must reverse this logic, and show that the given input accu-

racy guarantees the desired output accuracy. Given any desired ε > 0, we define δ = 1
3
ε,

and assume |x− 5| < δ. Then we have:

3|x− 5| < 3δ = ε =⇒ |3x− 15| < ε =⇒ |(3x−2)− 13| < ε,

which is our desired conclusion |f(x)− L| < ε. (Here =⇒ means “logically implies”.)



choose δ to be the smaller of d1 and d2. Thus we take δ = 2ε
√

3− ε2. Then
−δ < x−3 is equivalent to the desired lower bound −2ε

√
3 + ε2 < x−3; and

also x−3 < δ implies the desired upper bound, since:

δ = 2ε
√

3− ε2 < 2ε
√

3 + ε2.

Note: In evaluating limits, we almost always rely on the Limit Laws and
other general theorems, without a specific error analysis. The general results
guarantee that the error approaches zero, and this is all we need.

Proof of Limit Theorems. All the general Limit Laws of §1.6 can be
rigorously proved by error-control analysis. We prove the simplest one:

Sum Law: If limx→a f(x) = L and limx→a g(x) = M , then:

lim
x→a

(f(x) + g(x)) = L+M.

Proof. Consider any ε > 0. Since we assume limx→a f(x) = L and limx→a g(x) =
M , we can require the error tolerance 1

2ε for these limits, getting δ > 0 small
enough that 0 < |x− a| < δ forces:

−1
2ε < f(x)−L < 1

2ε and − 1
2ε < g(x)−M < 1

2ε.

Adding these inequalities, we find that 0 < |x− a| < δ also forces:

−1
2ε−

1
2ε < (f(x)−L) + (g(x)−M) < 1

2ε+ 1
2ε

Rewriting, this is just −ε < (f(x)+g(x)) − (L+M) < ε, which is the
desired output error bound.

Squeeze Theorem: If f(x) < g(x) < h(x) for all values of x near
a (except perhaps x = a), and limx→a f(x) = limx→a h(x) = L,
then limx→a g(x) = L.

Proof. Consider any ε > 0. Since we assume limx→a f(x) = L and limx→a h(x) =
L, we can find a δ > 0 such that 0 < |x−a| < δ forces −ε < f(x)−L < ε and
−ε < g(x)−L < ε. We also know f(x) < g(x) < h(x) provided |x − a| < δ
restricts x close enough to a, so:

f(x)−L < g(x)−L < h(x)−L.

Then 0 < |x− a| < δ also forces:

−ε < f(x)−L < g(x)−L and g(x)−L < h(x)−L < ε,

which gives the desired output accuracy for g(x).



Substitution Theorem: If limx→b f(x) = L and limx→a g(x) = b, and
g(x) 6= b for all x close enough to (but unequal to) a, then limx→a f(g(x)) = L.

Proof. For any ε > 0, we must find a number δ > 0 such that 0 < |x−a| < δ
forces |f(g(x))− L| < ε.

Take any ε > 0. Since limx→b f(x) = L, there is δ1 > 0 such that
0 < |y − b| < δ1 forces |f(y) − L| < ε. Also, since limx→a g(x) = b, there
exists δ2 > 0 such that 0 < |x − a| < δ2 forces |g(x) − b| < δ1. Now
take δ < δ2, and δ small enough that 0 < |x − a| < δ forces g(x) 6= b.
Then we know |x − a| < δ forces 0 < |g(x) − b| < δ1, which in turn forces
|f(g(x))− L| < ε, as required.


