
Math 132 Derivative Function Stewart §2.2

In Notes §2.1, we defined the derivative of a function f(x) at x = a, namely the number
f ′(a). Since this gives an output f ′(a) for any input a, the derivative defines a function.

Definition: For a function f(x), we define the derivative function f ′(x) by:

f ′(x) = lim
h→0

f(x+h)− f(x)

h
= lim

z→x

f(z)− f(x)

z − x
.

If the limit f ′(a) exists for a given x = a, we say f(x) is differentiable at a;
otherwise f ′(a) is undefined, and f(x) is non-differentiable or singular at a.

This just repeats the definitions in Notes §2.1, except that we think of the derivative as a
function of the variable x, rather than as a numerical value at a particular point x = a.
The choice of letters is meant to suggest different kinds of variables, but they do not have
any strict logical meaning: for example, f(x) = x2, f(a) = a2, and f(t) = t2 all define the
same function, and limx→a f(x) = limt→a f(t) = limz→a f(z) are all the same limit.

Differentiation. Another name for derivative is differential. When we compute f ′(x), we
differentiate f(x). The process of finding derivatives is differentiation.

As usual for mathematical objects, we can think of derivatives on four levels of meaning.
The physical meaning of f ′(x) is the rate of change of f(x) per unit change in x; for example
velocity is the derivative of the position function at time t. At the end of Notes §2.1, we also
saw how to compute a numerical approximation of a derivative as the diffference quotient
for a small value of h (see also §2.9). In this section, we explore the geometric meaning as
the slopes of the graph y = f(x), and algebraic methods for computing the limit f ′(x).

example: Let f(x) = x(x−2), with graph y = f(x) in blue:

We can sketch the derivative graph y = f ′(x) in red, purely from the original graph y = f(x),
without any computation. The slope of the original graph above a given x-value is the height
of the derivative graph above that x-value.

At the minimum x = 1, the original graph y = f(x) is horizontal and its slope is zero,
so f ′(1) = 0, and we plot the point (1, 0) on the derivative graph y = f ′(x). To the right
of this point, y = f(x) has positive slope, getting steeper and steeper; so y = f ′(x) > 0 is
above the x-axis, getting higher and higher. Above x = 2, the tangent of y = f(x) has slope
approximately 2 (considering the relative x and y scales), so we plot (2, 2) on y = f ′(x).
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As we move left from x = 1, the graph y = f(x) has negative slope, getting steeper and
steeper, so y = f ′(x) < 0 is below the x-axis, getting lower and lower. Above x = 0, we
estimate y = f(x) to have slope −2, and we plot (0,−2) on y = f ′(x). Thus, y = f ′(x)
looks like the red line in the above picture.

Next we differentiate algebraically. For any value of x:

f ′(x) = lim
h→0

f(x+h)− f(x)

h
= lim

h→0

(x+h)(x+h−2)− x(x−2)

h

= lim
h→0

x2+2xh+h2−2x−2h−x2+2x

h
= lim

h→0

2xh−2h+h2

h
= lim

h→0
2x−2+h = 2x− 2.

That is, f ′(x) = 2x− 2, which agrees with our sketch of the derivative graph.

example: Let f(x) = x3 − x, with graph in blue:

The original graph y = f(x) has a valley with horizontal tangent at x ∼= 0.6, so the derivative
f ′(0.6) ∼= 0, and we plot the approximate point (0.6, 0) on the derivative graph y = f ′(x);
and similarly the hill on y = f(x) corresponds to the point (−0.6, 0) on y = f ′(x). Between
these x-values, the slope of y = f(x) is negative, with the slope at x = 0 being about −1,
so y = f ′(x) < 0 is below the x-axis, bottoming out at (0,−1).

Algebraically:

f ′(x) = lim
h→0

((x+h)3−(x+h))− (x3−x)

h
= lim

h→0

(x3+3x2h+3xh2+h3−x−h)− x3+x

h

= lim
h→0

3x2h + 3xh2 + h3 − h

h
= lim

h→0
3x2 + 3xh + h2 − 1 = 3x2 − 1.



example: Let f(x) = 3
√
x, the cube root function, with graph in blue:

The slopes of the original graph y = f(x) are all positive, with the same slope above a given
x and its reflection −x. Thus the derivative graph y = f ′(x) > 0 lies above the x-axis, and
it is symmetric across the y-axis (an even function). The slope of y = f(x) gets smaller for
large positive or negative x, and it gets steeper and steeper near the origin, with a vertical
tangent at x = 0. Thus y = f ′(x) approaches the x-axis for large x, and shoots up the
y-axis on both sides of x = 0, with f ′(0) undefined.

Algebraically, we have: f ′(x) = limh→0

3√x+h− 3√x
h . We must liberate 3

√
x+h from under

the 3
√

, so as to be able to cancel h
h . In Notes §2.1, we multiplied top and bottom by the

conjugate radical, exploiting the identity (a− b)(a+ b) = a2− b2. Here we have cube roots,
so we use the identity: (a− b)(a2 + ab + b2) = a3 − b3, taking a = 3

√
x+h and b = 3

√
x:

f ′(x) = lim
h→0

3
√
x+h− 3

√
x

h
·

3
√
x+h

2
+ 3
√
x+h 3

√
x + 3
√
x
2

3
√
x+h

2
+ 3
√
x+h 3

√
x + 3
√
x
2

= lim
h→0

3
√
x+h

3 − 3
√
x
3

h( 3
√
x+h

2
+ 3
√
x+h 3

√
x + 3
√
x
2
)

= lim
h→0

x + h− x

h( 3
√
x+h

2
+ 3
√
x+h 3

√
x + 3
√
x
2
)

= lim
h→0

1
3
√
x+h

2
+ 3
√
x+h 3

√
x + 3
√
x
2

=
1

3
√
x+0

2
+ 3
√
x+0 3

√
x + 3
√
x
2

=
1

3 3
√
x
2 .

In the Notes §2.3, we will develop standard rules for computing derivatives, which let us
avoid such complicated limit calculations.

Continuity Theorem. Here is a basic fact relating derivatives and continuity:

Theorem: If f(x) is differentiable at x= a, then f(x) is also continuous at x= a.

Turing this around, we have the equivalent negative statement (the contrapositive): If f(x)
is not continuous at x = a, then it is not differentiable at x = a. That is, a discontinuity is
also a non-differentiable point (a singularity).

Proof of Theorem: Assume f(x) is differentiable at x = a, meaning f ′(a) = limx→a
f(x)−f(a)

x−a
is defined. The

Limit Law for Products gives:

lim
h→0

(f(a+h) − f(a)) = lim
h→0

f(a+h) − f(a)

h
· h = lim

h→0

f(a+h) − f(a)

h
· lim
h→0

h = f ′(a) · 0 = 0.

Thus 0 = limh→0[f(a+h) − f(a)] = [limh→0 f(a+h)] − f(a), and limh→0 f(a+h) = f(a), showing that f(x)
is continuous at x = a.


