Math 132 Derivative Function Stewart §2.2

In Notes §2.1, we defined the derivative of a function f(z) at = a, namely the number
f'(a). Since this gives an output f’(a) for any input a, the derivative defines a function.

Definition: For a function f(x), we define the derivative function f'(x) by:
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If the limit f’(a) exists for a given x = a, we say f(z) is differentiable at a;
otherwise f'(a) is undefined, and f(z) is non-differentiable or singular at a.

This just repeats the definitions in Notes §2.1, except that we think of the derivative as a
function of the variable x, rather than as a numerical value at a particular point x = a.
The choice of letters is meant to suggest different kinds of variables, but they do not have
any strict logical meaning: for example, f(z) = 22, f(a) = a?, and f(t) = t? all define the

same function, and lim,_,, f(x) = limy_, f(t) = lim,_,, f(2) are all the same limit.

Differentiation. Another name for derivative is differential. When we compute f'(x), we
differentiate f(x). The process of finding derivatives is differentiation.

As usual for mathematical objects, we can think of derivatives on four levels of meaning.
The physical meaning of f’(z) is the rate of change of f(x) per unit change in z; for example
velocity is the derivative of the position function at time t. At the end of Notes §2.1, we also
saw how to compute a numerical approximation of a derivative as the diffference quotient
for a small value of h (see also §2.9). In this section, we explore the geometric meaning as
the slopes of the graph y = f(z), and algebraic methods for computing the limit f’(x).

EXAMPLE: Let f(x) = z(z—2), with graph y = f(z) in blue:
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We can sketch the derivative graph y = f’(z) in red, purely from the original graph y = f(z),
without any computation. The slope of the original graph above a given x-value is the height
of the derivative graph above that z-value.

At the minimum = = 1, the original graph y = f(x) is horizontal and its slope is zero,
so f/(1) = 0, and we plot the point (1,0) on the derivative graph y = f’(x). To the right
of this point, y = f(z) has positive slope, getting steeper and steeper; so y = f'(z) > 0 is
above the z-axis, getting higher and higher. Above z = 2, the tangent of y = f(x) has slope
approximately 2 (considering the relative x and y scales), so we plot (2,2) on y = f/(z).
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As we move left from x = 1, the graph y = f(z) has negative slope, getting steeper and
steeper, so y = f'(x) < 0 is below the z-axis, getting lower and lower. Above x = 0, we
estimate y = f(z) to have slope —2, and we plot (0,—2) on y = f/(x). Thus, y = f'(x)
looks like the red line in the above picture.

Next we differentiate algebraically. For any value of x:
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That is, f'(x) = 2z — 2, which agrees with our sketch of the derivative graph.
EXAMPLE: Let f(x) = 23 — z, with graph in blue:
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The original graph y = f(x) has a valley with horizontal tangent at 2z = 0.6, so the derivative
17(0.6) 2 0, and we plot the approximate point (0.6,0) on the derivative graph y = f'(z);
and similarly the hill on y = f(z) corresponds to the point (—0.6,0) on y = f’(z). Between
these z-values, the slope of y = f(z) is negative, with the slope at = 0 being about —1,
soy = f'(z) < 0 is below the x-axis, bottoming out at (0,—1).

Algebraically:
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EXAMPLE: Let f(z) = </z, the cube root function, with graph in blue:
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The slopes of the original graph y = f(x) are all positive, with the same slope above a given
x and its reflection —x. Thus the derivative graph y = f’(x) > 0 lies above the z-axis, and
it is symmetric across the y-axis (an even function). The slope of y = f(x) gets smaller for
large positive or negative z, and it gets steeper and steeper near the origin, with a vertical
tangent at x = 0. Thus y = f/(z) approaches the x-axis for large x, and shoots up the
y-axis on both sides of x = 0, with f’(0) undefined.

Algebraically, we have: f'(z) = limy_ w . We must liberate v/z+h from under
the Y 80 as to be able to cancel % In Notes §2.1, we multiplied top and bottom by the
conjugate radical, exploiting the identity (a —b)(a+b) = a? — b%. Here we have cube roots,
so we use the identity: (a — b)(a® + ab + b?) = a® — b3, taking a = V/z+h and b = /z:
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In the Notes §2.3, we will develop standard rules for computing derivatives, which let us
avoid such complicated limit calculations.

Continuity Theorem. Here is a basic fact relating derivatives and continuity:

Theorem: If f(x) is differentiable at = =a, then f(x) is also continuous at = = a.

Turing this around, we have the equivalent negative statement (the contrapositive): If f(x)
is not continuous at z = a, then it is not differentiable at x = a. That is, a discontinuity is
also a non-differentiable point (a singularity).

Proof of Theorem: Assume f(z) is differentiable at z = a, meaning f’(a) = limy_q M is defined. The
Limit Law for Products gives:
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Thus 0 = lim,—o[f(a+h) — f(a)] = [limr—o f(a+h)] — f(a), and limu—,0 f(a+h) = f(a), showing that f(z)
is continuous at x = a.



