In Notes $\S 2.1$, we defined the derivative of a function $f(x)$ at $x=a$, namely the number $f^{\prime}(a)$. Since this gives an output $f^{\prime}(a)$ for any input a, the derivative defines a function.

Definition: For a function $f(x)$, we define the derivative function $f^{\prime}(x)$ by:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x} .
$$

If the limit $f^{\prime}(a)$ exists for a given $x=a$, we say $f(x)$ is differentiable at a; otherwise $f^{\prime}(a)$ is undefined, and $f(x)$ is non-differentiable or singular at a.

This just repeats the definitions in Notes $\S 2.1$, except that we think of the derivative as a function of the variable x, rather than as a numerical value at a particular point $x=a$. The choice of letters is meant to suggest different kinds of variables, but they do not have any strict logical meaning: for example, $f(x)=x^{2}, f(a)=a^{2}$, and $f(t)=t^{2}$ all define the same function, and $\lim _{x \rightarrow a} f(x)=\lim _{t \rightarrow a} f(t)=\lim _{z \rightarrow a} f(z)$ are all the same limit.

Differentiation. Another name for derivative is differential. When we compute $f^{\prime}(x)$, we differentiate $f(x)$. The process of finding derivatives is differentiation.

As usual for mathematical objects, we can think of derivatives on four levels of meaning. The physical meaning of $f^{\prime}(x)$ is the rate of change of $f(x)$ per unit change in x; for example velocity is the derivative of the position function at time t. At the end of Notes $\S 2.1$, we also saw how to compute a numerical approximation of a derivative as the diffference quotient for a small value of h (see also §2.9). In this section, we explore the geometric meaning as the slopes of the graph $y=f(x)$, and algebraic methods for computing the limit $f^{\prime}(x)$.

EXAMPLE: Let $f(x)=x(x-2)$, with graph $y=f(x)$ in blue:

We can sketch the derivative graph $y=f^{\prime}(x)$ in red, purely from the original graph $y=f(x)$, without any computation. The slope of the original graph above a given x-value is the height of the derivative graph above that x-value.

At the minimum $x=1$, the original graph $y=f(x)$ is horizontal and its slope is zero, so $f^{\prime}(1)=0$, and we plot the point $(1,0)$ on the derivative graph $y=f^{\prime}(x)$. To the right of this point, $y=f(x)$ has positive slope, getting steeper and steeper; so $y=f^{\prime}(x)>0$ is above the x-axis, getting higher and higher. Above $x=2$, the tangent of $y=f(x)$ has slope approximately 2 (considering the relative x and y scales), so we plot $(2,2)$ on $y=f^{\prime}(x)$.

[^0]As we move left from $x=1$, the graph $y=f(x)$ has negative slope, getting steeper and steeper, so $y=f^{\prime}(x)<0$ is below the x-axis, getting lower and lower. Above $x=0$, we estimate $y=f(x)$ to have slope -2 , and we plot $(0,-2)$ on $y=f^{\prime}(x)$. Thus, $y=f^{\prime}(x)$ looks like the red line in the above picture.
Next we differentiate algebraically. For any value of x :

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)(x+h-2)-x(x-2)}{h} \\
=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-2 x-2 h-x^{2}+2 x}{h}=\lim _{h \rightarrow 0} \frac{2 x h-2 h+h^{2}}{h}=\lim _{h \rightarrow 0} 2 x-2+h=2 x-2 .
\end{gathered}
$$

That is, $f^{\prime}(x)=2 x-2$, which agrees with our sketch of the derivative graph.
EXAMPLE: Let $f(x)=x^{3}-x$, with graph in blue:

The original graph $y=f(x)$ has a valley with horizontal tangent at $x \cong 0.6$, so the derivative $f^{\prime}(0.6) \cong 0$, and we plot the approximate point $(0.6,0)$ on the derivative graph $y=f^{\prime}(x)$; and similarly the hill on $y=f(x)$ corresponds to the point $(-0.6,0)$ on $y=f^{\prime}(x)$. Between these x-values, the slope of $y=f(x)$ is negative, with the slope at $x=0$ being about -1 , so $y=f^{\prime}(x)<0$ is below the x-axis, bottoming out at $(0,-1)$.

Algebraically:

$$
\begin{aligned}
f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{\left((x+h)^{3}-(x+h)\right)-\left(x^{3}-x\right)}{h}=\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x-h\right)-x^{3}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-h}{h}=\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}-1=3 x^{2}-1 .
\end{aligned}
$$

example: Let $f(x)=\sqrt[3]{x}$, the cube root function, with graph in blue:

The slopes of the original graph $y=f(x)$ are all positive, with the same slope above a given x and its reflection $-x$. Thus the derivative graph $y=f^{\prime}(x)>0$ lies above the x-axis, and it is symmetric across the y-axis (an even function). The slope of $y=f(x)$ gets smaller for large positive or negative x, and it gets steeper and steeper near the origin, with a vertical tangent at $x=0$. Thus $y=f^{\prime}(x)$ approaches the x-axis for large x, and shoots up the y-axis on both sides of $x=0$, with $f^{\prime}(0)$ undefined.

Algebraically, we have: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h}$. We must liberate $\sqrt[3]{x+h}$ from under the $\sqrt[3]{ }$, so as to be able to cancel $\frac{h}{h}$. In Notes $\S 2.1$, we multiplied top and bottom by the conjugate radical, exploiting the identity $(a-b)(a+b)=a^{2}-b^{2}$. Here we have cube roots, so we use the identity: $(a-b)\left(a^{2}+a b+b^{2}\right)=a^{3}-b^{3}$, taking $a=\sqrt[3]{x+h}$ and $b=\sqrt[3]{x}$:

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h} \cdot \frac{\sqrt[3]{x+h}}{}{ }^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+\sqrt[3]{x}^{2} \\
=\lim _{h \rightarrow 0} \frac{\sqrt[3]{x+h} \sqrt[3]{x}+\sqrt[3]{x}^{2}}{h\left(\sqrt[3]{x+h}^{2}+\sqrt[3]{x+h}^{2} \sqrt[3]{x}+\sqrt[3]{x}^{2}\right)}=\lim _{h \rightarrow 0} \frac{x+h-x}{h\left(\sqrt[3]{x+h}^{2}+\sqrt[3]{x+h}_{\sqrt[3]{x}}+\sqrt[3]{x}^{2}\right)} \\
=\lim _{h \rightarrow 0} \frac{1}{\sqrt[3]{x+h}^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+\sqrt[3]{x}^{2}}=\frac{1}{\sqrt[3]{x+0}^{2}+\sqrt[3]{x+0} \sqrt[3]{x}+\sqrt[3]{x}^{2}}=\frac{1}{3 \sqrt[3]{x}^{2}} .
\end{gathered}
$$

In the Notes $\S 2.3$, we will develop standard rules for computing derivatives, which let us avoid such complicated limit calculations.

Continuity Theorem. Here is a basic fact relating derivatives and continuity:
Theorem: If $f(x)$ is differentiable at $x=a$, then $f(x)$ is also continuous at $x=a$.
Turing this around, we have the equivalent negative statement (the contrapositive): If $f(x)$ is not continuous at $x=a$, then it is not differentiable at $x=a$. That is, a discontinuity is also a non-differentiable point (a singularity).
Proof of Theorem: Assume $f(x)$ is differentiable at $x=a$, meaning $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ is defined. The Limit Law for Products gives:

$$
\lim _{h \rightarrow 0}(f(a+h)-f(a))=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot h=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot \lim _{h \rightarrow 0} h=f^{\prime}(a) \cdot 0=0 .
$$

Thus $0=\lim _{h \rightarrow 0}[f(a+h)-f(a)]=\left[\lim _{h \rightarrow 0} f(a+h)\right]-f(a)$, and $\lim _{h \rightarrow 0} f(a+h)=f(a)$, showing that $f(x)$ is continuous at $x=a$.

[^0]: Notes by Peter Magyar magyar@math.msu.edu

