
Math 132 Differentiation Formulas Stewart §2.3

So far, we have seen how various real-world problems (rate of change) and geometric prob-
lems (tangent lines) lead to derivatives. In this section, we will see how to solve such
problems by computing derivatives (differentiating) algebraically.

Notations. We have seen the Newton notation f ′(x) for the derivative of f(x). The al-
ternative Leibnitz notation for the derivative is df

dx , meant to remind us of the definition of
f ′(x) as the limit of difference quotients:

f ′(x) =
df

dx
= lim

∆x→0

∆f

∆x
.

Here ∆f = f(x+h) − f(x), the difference∗ in f(x) produced by the difference ∆x =
(x+h)−x = h. Also, df and dx are meant to suggest very small ∆f and ∆x, but df

dx is
not literally the quotient of two small quantities, just a complicated symbol meaning the
limit of such quotients.

To illustrate: for f(x) = x2, the formula f ′(x) = (x2)′ = 2x can be written in Leibnitz
notation as:

df

dx
=

d

dx
(x2) = 2x.

The symbol df
dx means the function f ′(x); for a particular value of a derivative at x = a, we

write f ′(a) = df
dx

∣∣∣
x=a

. The notation f ′ = Df is also used, and f ′(x) = Df(x).

Basic Derivatives. To compute derivatives without a limit analysis each time, we use
the same strategy as for limits in Notes §1.6: we establish the derivatives of some basic
functions, then we show how to compute the derivatives of sums, products, and quotients
of known functions.

Theorem: (i) For a constant function f(x) = c, we have d
dx(c) = (c)′ = 0.

(ii) For f(x) = x, we have d
dx(x) = (x)′ = 1.

(iii) For f(x) = xp with p any real number, we have:

d
dx(xp) = (xp)′ = pxp−1.

The picture below shows the change in the area f(x) = x2 due to increment h = ∆x is
about ∆f ∼= 2x∆x, so f ′(x) ∼= ∆f

∆x
∼= 2x. Similarly for volume f(x) = x3, with f ′(x) ∼= 3x2.

The same holds for the growth of an n-dimensional cube, giving f ′(x) = nxn−1, but we can
only compute this algebraically, not picture it.
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Proof: (i) and (ii) follow easily from the definition of f ′(x). We prove (iii) in stages, for
more and more general powers p, relying repeatedly on the family of formulas: an − bn =
(a−b)(an−1 + an−2b + an−3b2 + · · · + bn−1), valid for n = 1, 2, 3, . . . First, we consider a
whole number p = n, and take a = x+h and b = x:

(xn)′ = lim
h→0

(x+h)n − xn

h
= lim

h→0

((x+h)−x) ((x+h)n−1+(x+h)n−2x+ · · ·+xn−1)

h

= lim
h→0

(x+h)n−1+(x+h)n−2x+· · ·+xn−1 = (x+0)n−1+(x+0)n−2x+· · ·+xn−1 = nxn−1.

Thus, (xn)′ = nxn−1, and (iii) holds for p = n.
Second, we do a similar calculation for a negative integer p = −n, so that xp = 1

xn ; in
the derivative limit, we combine fractions and apply the an − bn formula with a = x and
b = x+h. The result simplifies to −nxn−1

x2n = (−n)x(−n)−1.
Third, we consider a fraction p = n

m with m a whole number and n an integer, so that

xp = x
m
n = m

√
xn. We take the derivative limit with numerator m

√
(x+h)n − m

√
xn = a− b.

As in §2.2 for 3
√
x, multiplying top and bottom by am−1 +am−2b+am−3b2 + · · ·+ bm−1 gets

rid of the radicals m
√

, leaving the numerator am − bm = (x+h)n − xn, which we handled
previously. Again, the limit eventually simplifies to formula (iii).

Formula (iii) is also valid for an irrational power like p =
√

2, but this requires more

theory: we will have to wait until Calculus II to even state a clear definiton of x
√

2.

Having computed all these limits, we never have to do so again. Just from quoting the
Theorem, we get formulas like: (x2)′ = 2x1 = 2x; (x10)′ = 10x9;(

3
√
x
)′

= (x1/3)′ = 1
3x
−2/3 = 1

3
3√
x2

;
(

1
x

)′
= (x−1)′ = (−1)x−1−1 = − 1

x2 .

Derivative Rules. Suppose the functions f(x), g(x) are differentiable at x, so that f ′(x)
and g′(x) exist. Then we get the following derivatives:

• Sum: (f(x) + g(x))′ = f ′(x) + g′(x).

• Difference: (f(x)− g(x))′ = f ′(x)− g′(x).

• Constant Multiple: (c f(x))′ = c f ′(x) for any constant c.

• Product: (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

• Quotient:

(
f(x)

g(x)

)′
=

f ′(x)g(x)− f(x)g′(x)

g(x)2
, where g(x) 6= 0.

The first three of these Rules, which express the linearity of the derivative operation, are
intuitive and easy to prove. For example the Sum Rule:

(f(x) + g(x))′ = lim
h→0

(f(x+h)+g(x+h))−(f(x)+g(x))
h = lim

h→0

f(x+h)−f(x)
h + g(x+h)−g(x)

h

= lim
h→0

f(x+h)−f(x)
h + lim

h→0

g(x+h)−g(x)
h = f ′(x) + g′(x).

Here the third equality follows from the Sum Law for limits in Notes §1.6.

Warning: The derivative of a product is NOT the product of derivatives.



We obtain the correct Product Rule from a geometric model: consider a rectangle with
changing sides of lengths f(x) and g(x) depending on some variable x, the upper left rect-
angle below:

The product f(x)g(x) is the area, and the derivative (f(x)g(x))′ is the rate of change of area
with respect to a change in x. Suppose small increment ∆x = h produces some positive
increments ∆f = f(x+h)−f(x) and ∆g = g(x+h)−g(x) in the sides, so that the increment
of area, ∆(f · g) = f(x+h)g(x+h)− f(x)g(x), is the area of the three edge rectangles:†

∆(f · g) = (∆f)·g(x) + f(x)·(∆g) + (∆f)·(∆g).

To get the derivative, we divide by ∆x to get the difference quotient, and send ∆x = h→ 0:

(f(x)g(x))′ = lim
∆x→0

∆(f · g)
∆x = lim

∆x→0

(∆f)g(x)
∆x + f(x)(∆g)

∆x + (∆f)(∆g)
∆x

=

(
lim

∆x→0

∆f
∆x

)
g(x) + f(x)

(
lim

∆x→0

∆g
∆x

)
+

(
lim

∆x→0

∆f
∆x

)(
lim

∆x→0
∆g

)
= f ′(x)g(x) + f(x)g′(x) + f ′(x)(0) = f ′(x)g(x) + f(x)g′(x).

Note that the vanishing third term corresponds to the tiny bottom right rectangle.
Lastly, we prove the Quotient Rule:(

f(x)

g(x)

)′
= lim

h→0

f(x+h)
g(x+h) −

f(x)
g(x)

h
= lim

h→0

f(x+h)g(x)− f(x)g(x+h)

h g(x+h) g(x)

= lim
h→0

f(x+h)g(x)− f(x)g(x) + f(x)g(x)− f(x)g(x+h)

h g(x+h) g(x)

Here, after putting the expression over a common denominator, we have added and sub-
tracted the quantity f(x)g(x) in the numerator, leaving the limit unchanged. Our aim is
to factor the first pair and last pair of terms:(

f(x)

g(x)

)′
= lim

h→0

(f(x+h)−f(x)) g(x) + f(x) (g(x)−g(x+h))

h g(x+h) g(x)

= lim
h→0

1

g(x+h) g(x)

(
f(x+h)− f(x)

h
g(x)− f(x)

g(x+h)− g(x)

h

)
=

1

g(x+0) g(x)

(
f ′(x)g(x)− f(x)g′(x)

)
=

f ′(x)g(x)− f(x)g′(x)

g(x)2
.

We have again used several Limit Laws from Notes §1.6. We could give another proof of
the Product Rule in a very similar way.

†We can check this formula algebraically for any f(x), f(x+h), g(x), g(x+h): just substitute for ∆f , ∆g.



Derivative computations. By repeatedly using these Rules, we can quickly compute the
derivatives of most functions.

example: Find (
√
x)′ = d

dx(
√
x). Solution: (

√
x)′ = (x1/2)′ = 1

2x
(1/2)−1 = 1

2x
−1/2 = 1

2
√
x
,

where we used the Basic Derivative (xp)′ = pxp−1 with p = 1
2 .

example: (
√

10)′ = 0 since the derivative of any constant, even a complicated one, is zero.

example: For f(x) = (5x2 + 1)(
√
x− 3), find the derivative f ′(x) = df

dx :(
(5x2+1)(

√
x−3)

)′
=

(
5x2+1

)′
(
√
x−3) +

(
5x2+1

)
(
√
x−3)

′
by Product Rule

=
(
5(x2)′+(1)′

)
(
√
x−3) +

(
5x2+1

)
((
√
x)′−(3)′) by Sum & Const Mult Rules

=
(
5(2x1)+0

)
(
√
x−3) +

(
5x2+1

) (
1
2x
−1/2−0

)
by Basic Derivatives

= 10x(
√
x−3) + (5x2+1) 1

2
√
x

tidying up

Note how we used the derivative from the previous example, (
√
x)′ = 1

2x
−1/2.

Another way to find the same derivative would be to multiply out first:

f(x) = (5x2+1)(
√
x−3) = 5x2√x− 15x2 +

√
x− 3 = 5x5/2 − 15x2 + x1/2 − 3.

Then we get the derivative:

f ′(x) = 5(5
2x

(5/2)−1)− 15(2x1) + 1
2x

(1/2)−1 − 0 = 25
2 x
√
x− 30x + 1

2
√
x
.

This agrees with our previous answer, multiplied out.

example: Differentiate g(t) = t5+1
t
√
t

. Solution by the Quotient Rule:

g′(t) =
dg

dt
=

(
t5+1

t
√
t

)′
=

(t5+1)′(t
√
t)− (t5+1)(t

√
t)′

(t
√
t)2

=
(5t4)(t

√
t)− (t5+1)(3

2 t
1/2)

t3
,

where we use t
√
t = t3/2.

Solution by multiplying out: 1
t
√
t

= t−3/2, so:

g(t) = (t5+1)t−3/2 = t7/2 + t−3/2 and g′(t) = 7
2 t

5/2 − 3
2 t

1/2.

Example: A block of ice has length 10cm, width 5cm, and height 20cm. Its length and
width are melting at a rate of 1cm per hour, but its height is melting at 2cm per hour
(because the base is sitting on the warm ground). How fast is the volume decreasing?

Solution: The volume is V = `wh cm3, where V, `, w, h are all functions of time t. The
rate of change is the derivative. We use the Product Rule twice, considering `wh = (`)(wh):

dV

dt
= V ′ = (`wh)′ = (`)′(wh)+(`)(wh)′ = `′wh+`(w′h+wh′) = `′wh+`w′h+`wh′.

We want the melt rate at the current time t = 0, and we are given: `(0) = 10 cm, `′(0) = −1
cm/hr; and w(0) = 5 cm, w′(0) = −1 cm/hr; and h(0) = 20 cm, h′(0) = −2 cm/hr. Thus:

V ′(0) = `′(0)w(0)h(0) + `(0)w′(0)h(0) + `(0)w(0)h′(0)

= (−1)(5)(20) + (10)(−1)(20) + (10)(5)(−2) = −400 cm3/hr.



Higher derivatives. Since the derivative operation turns a function f(x) into another
function f ′(x), we can do it again to f ′(x), obtaining yet another function denoted f ′′(x) =

(f ′(x))′ or d2f
dx = d

dx

(
df
dx

)
, called the second derivative of f(x).

In real-world terms, if f ′(x) is the rate of change of f(x), then f ′′(x) is the rate of
change of f ′(x), namely how much the rate f ′(x) is speeding up or slowing down.

Example: A stone falls f(t) = 16t2 ft in t seconds. Compute the repeated derivatives of
this function, and interpret their physical meaning.

• The first derivative is f ′(t) = (16t2)′ = 16(2t1) = 32t ft/sec. This is the velocity
v(t) = f ′(t) = 32t ft/sec, increasing proportional to time.

• The second derivative is f ′′(t) = (32t)′ = 32, with units ft/sec per sec = ft/sec2.
It means the rate of change of velocity, how many ft/sec of speed is gained each
second. This is the acceleration of the stone, a(t) = f ′′(t) = 32 ft/sec2, the constant
acceleration due to gravity.

• The third derivative is f ′′′(t) = (32)′ = 0, meaning the rate of change of a constant
acceleration is zero. The physics term for this quantity is the jerk, and since the jerk
here is zero, we see that gravity does not jerk: it pulls smoothly. All higher derivatives
are also zero; these do not have common names.‡

‡But look up “Snap, crackle, pop (physics)”.


