Math 132 Trigonometric Derivatives Stewart §2.4

Derivative of sine and cosine. The sine and cosine are important functions describing periodic motion. From the graph $y = \sin(x)$ (in blue), let us examine the slope at each point to sketch the graph of the derivative $y = \sin'(x)$ (in red), as in Notes §2.3:

The graph $y = \sin(x)$ has hills and valleys at $x = \pm \frac{1}{2}\pi, \pm \frac{3}{2}\pi, \pm \frac{5}{2}\pi, \ldots$, so $\sin'(x) = 0$ at these points. For the interval $-\frac{1}{2}\pi < x < \frac{1}{2}\pi$, the slope of $y = \sin(x)$ is positive with a steepest slope of about 1 at x = 0, so $y = \sin'(x)$ swells above the x-axis from 0 to 1 to 0, and similarly on the other intervals. The graph we have drawn seems to be roughly the cosine function, so we may guess that $\sin'(x) \stackrel{??}{=} \cos(x)$. In fact, this is true:

THEOREM: $\sin'(x) = \cos(x)$ and $\cos'(x) = -\sin(x)$.

Proof: Here is Newton's original geometric argument. Consider as below a right triangle with hypotenuse 1, angle $x = \theta$, and height $\sin(\theta)$; and another triangle with slightly larger angle $\theta + \Delta \theta$ and slightly larger height $\sin(\theta + \Delta \theta)$.

The small red triangle is enlarged at right. It is roughly a right triangle, but its hypotenuse is a slightly curved arc of the unit circle with length $\Delta\theta$, since radian angle measures arclength. Its height is $\Delta \sin(\theta) = \sin(\theta + \Delta\theta) - \sin(\theta)$. By equality of alternate interior angles, the angle below the red triangle is θ , and the red triangle has one angle $\bar{\theta} = \frac{\pi}{2} - \theta$ and the other approximately θ . Thus we can approximate the cosine of θ as the red side

Notes by Peter Magyar magyar@math.msu.edu

adjacent to θ divided by the hypotenuse:

$$\cos(\theta) \approx \frac{\Delta \sin(\theta)}{\Delta \theta} = \frac{\sin(\theta + \Delta \theta) - \sin(\theta)}{\Delta \theta}$$

As the angle increment becomes very small, $h = \Delta \theta \rightarrow 0$, the circular arc becomes more and more straight, and the approximation becomes an equality in the limit.

$$\cos(\theta) = \lim_{\Delta \theta \to 0} \frac{\sin(\theta + \Delta \theta) - \sin(\theta)}{\Delta \theta} \stackrel{\text{def}}{=} \sin'(\theta)$$

We can show $\cos'(\theta) = -\sin(\theta)$ by examining the horizontal side of the small triangle, or by using $\cos(\theta) = \sin(\frac{\pi}{2} - \theta)$.

To be precise, we give error bounds. The exact angles inside the red sector are $\bar{\theta}$ and $\theta + \Delta \theta$. The straight line hypotenuse (secant of the sector) has length $h_1 = 2\sin(\Delta\theta/2) < \Delta\theta$, forming a right triangle with angles $\theta_1 < \theta + \Delta\theta$ and $\bar{\theta}_1 < \bar{\theta}$, so that $\theta < \theta_1$. Thus:

$$\cos(\theta) > \cos(\theta_1) = \frac{\Delta \sin(\theta)}{h_1} > \frac{\Delta \sin(\theta)}{\Delta \theta}.$$

On the other hand, if we draw a tangent from the upper vertex to the horizontal red line, we get a right triangle with angle $\theta + \Delta \theta$ and hypotenuse $h_2 > \tan(\Delta \theta) > \Delta \theta$. Hence:

$$\frac{\Delta \sin(\theta)}{\Delta \theta} > \frac{\Delta \sin(\theta)}{h_2} = \cos(\theta + \Delta \theta)$$

Thus $\frac{\Delta \sin(\theta)}{\Delta \theta}$ is squeezed between $\cos(\theta)$ and $\cos(\theta + \Delta \theta)$, and the limit follows.

Here we used $\sin(\Delta\theta) < \Delta\theta < \tan(\Delta\theta)$. To show this geometrically, compare areas of three increasing regions with angle $\Delta\theta$: secant isosceles triangle $\frac{1}{2}\sin(\Delta\theta)$; sector $\frac{1}{2}\Delta\theta$; tangent right triangle $\frac{1}{2}\tan(\Delta\theta)$.

COROLLARY: (a)
$$\lim_{h \to 0} \frac{\sin(h)}{h} = 1$$
 (b) $\lim_{h \to 0} \frac{\cos(h) - 1}{h} = 0$.

Proof: The first limit is just the derivative of sine at zero:

$$\lim_{h \to 0} \frac{\sin(h)}{h} = \lim_{h \to 0} \frac{\sin(0+h) - \sin(0)}{h} = \sin'(0) = \cos(0) = 1,$$

and similarly for the second. (Or squeeze using $\sin(h) < h < \sin(h)/\cos(h)$, proved above.)

General trigonometric derivatives. From these basic derivatives, we can compute the derivative of any trig function or combination of trig functions.

EXAMPLE: Compute the derivative of tan(x). By the Quotient Rule for derivatives (§2.3):

$$\tan'(x) = \left(\frac{\sin(x)}{\cos(x)}\right)' = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)}$$
$$= \frac{\cos(x)\cos(x) - \sin(x)(-\sin(x))}{\cos^2(x)} = \frac{1}{\cos^2(x)} = \sec^2(x)$$

since $\cos^2(x) + \sin^2(x) = 1$. In fact, we get the following derivatives:

f(x)	$\sin(x)$	$\cos(x)$	$\tan(x)$	$\sec(x)$	$\csc(x)$	$\cot(x)$
f'(x)	$\cos(x)$	$-\sin(x)$	$\sec^2(x)$	$\tan(x)\sec(x)$	$-\cot(x)\csc(x)$	$-\csc^2(x)$

Warning: These formulas are for angle x in **radians**, NOT in degrees (see §2.5 end).

Limits of quotients. We can also compute trigonometric limits of the form $\frac{0}{0}$. The trick is to manipulate the numerators and denominators to get factors of the form $\frac{\sin(g(x))}{g(x)}$, where g(x) is any quantity which goes to zero.

EXAMPLE: Compute $\lim_{x\to 0} \frac{\sin(3x)}{x}$. We have:

 $\lim_{x \to 0} \frac{\sin(3x)}{x} = \lim_{x \to 0} \frac{\sin(3x)}{3x} \cdot \frac{3x}{x} = \lim_{x \to 0} \frac{\sin(3x)}{3x} \cdot \lim_{x \to 0} \frac{3x}{x} = \lim_{h \to 0} \frac{\sin(h)}{h} \cdot \lim_{x \to 0} 3 = 1 \cdot 3 = 3.$

Here we use $\lim_{x\to 0} \frac{\sin(3x)}{3x} = \lim_{h\to 0} \frac{\sin(h)}{h} = 1$, where we substitute h = g(x) = 3x, so that $x \to 0$ forces $h \to 0$.

EXAMPLE: Compute $\lim_{x\to 0} \frac{\tan(x)}{\sin(\sqrt{x})}$. Starting with $\tan(x) = \frac{\sin(x)}{\cos(x)}$, we get:

$$\lim_{x \to 0} \frac{\tan(x)}{\sin(\sqrt{x})} = \lim_{x \to 0} \frac{1}{\cos(x)} \cdot \sin(x) \cdot \frac{1}{\sin(\sqrt{x})}$$
$$= \lim_{x \to 0} \frac{1}{\cos(x)} \cdot \frac{\sin(x)}{x} \cdot x \cdot \frac{\sqrt{x}}{\sin(\sqrt{x})} \cdot \frac{1}{\sqrt{x}}$$
$$= \lim_{x \to 0} \frac{\sqrt{x}}{\cos(x)} \cdot \frac{\sin(x)}{x} \cdot \frac{1}{\frac{\sin(\sqrt{x})}{\sqrt{x}}} = \frac{\sqrt{0}}{\cos(0)} \cdot 1 \cdot \frac{1}{1} = 0,$$

where $\lim_{x\to 0} \frac{\sin(\sqrt{x})}{\sqrt{x}} = 1$ by the substitution $h = g(x) = \sqrt{x}$.

^{*}By the Limit Substitution Theorem at the end of Notes §1.7.