Derivative of sine and cosine. The sine and cosine are important functions describing periodic motion. From the graph $y=\sin (x)$ (in blue), let us examine the slope at each point to sketch the graph of the derivative $y=\sin ^{\prime}(x)$ (in red), as in Notes §2.3:

The graph $y=\sin (x)$ has hills and valleys at $x= \pm \frac{1}{2} \pi, \pm \frac{3}{2} \pi, \pm \frac{5}{2} \pi, \ldots$, so $\sin ^{\prime}(x)=0$ at these points. For the interval $-\frac{1}{2} \pi<x<\frac{1}{2} \pi$, the slope of $y=\sin (x)$ is positive with a steepest slope of about 1 at $x=0$, so $y=\sin ^{\prime}(x)$ swells above the x-axis from 0 to 1 to 0 , and similarly on the other intervals. The graph we have drawn seems to be roughly the cosine function, so we may guess that $\sin ^{\prime}(x) \stackrel{? ?}{=} \cos (x)$. In fact, this is true:

THEOREM: $\sin ^{\prime}(x)=\cos (x)$ and $\cos ^{\prime}(x)=-\sin (x)$.
Proof: Here is Newton's original geometric argument. Consider as below a right triangle with hypotenuse 1 , angle $x=\theta$, and height $\sin (\theta)$; and another triangle with slightly larger angle $\theta+\Delta \theta$ and slightly larger height $\sin (\theta+\Delta \theta)$.

The small red triangle is enlarged at right. It is roughly a right triangle, but its hypotenuse is a slightly curved arc of the unit circle with length $\Delta \theta$, since radian angle measures arclength. Its height is $\Delta \sin (\theta)=\sin (\theta+\Delta \theta)-\sin (\theta)$. By equality of alternate interior angles, the angle below the red triangle is θ, and the red triangle has one angle $\bar{\theta}=\frac{\pi}{2}-\theta$ and the other approximately θ. Thus we can approximate the cosine of θ as the red side

[^0]adjacent to θ divided by the hypotenuse:
$$
\cos (\theta) \approx \frac{\Delta \sin (\theta)}{\Delta \theta}=\frac{\sin (\theta+\Delta \theta)-\sin (\theta)}{\Delta \theta}
$$

As the angle increment becomes very small, $h=\Delta \theta \rightarrow 0$, the circular arc becomes more and more straight, and the approximation becomes an equality in the limit.

$$
\cos (\theta)=\lim _{\Delta \theta \rightarrow 0} \frac{\sin (\theta+\Delta \theta)-\sin (\theta)}{\Delta \theta} \stackrel{\text { def }}{=} \sin ^{\prime}(\theta)
$$

We can show $\cos ^{\prime}(\theta)=-\sin (\theta)$ by examining the horizontal side of the small triangle, or by using $\cos (\theta)=\sin \left(\frac{\pi}{2}-\theta\right)$.

To be precise, we give error bounds. The exact angles inside the red sector are $\bar{\theta}$ and $\theta+\Delta \theta$. The straight line hypotenuse (secant of the sector) has length $h_{1}=2 \sin (\Delta \theta / 2)<\Delta \theta$, forming a right triangle with angles $\theta_{1}<\theta+\Delta \theta$ and $\bar{\theta}_{1}<\bar{\theta}$, so that $\theta<\theta_{1}$. Thus:

$$
\cos (\theta)>\cos \left(\theta_{1}\right)=\frac{\Delta \sin (\theta)}{h_{1}}>\frac{\Delta \sin (\theta)}{\Delta \theta} .
$$

On the other hand, if we draw a tangent from the upper vertex to the horizontal red line, we get a right triangle with angle $\theta+\Delta \theta$ and hypotenuse $h_{2}>\tan (\Delta \theta)>\Delta \theta$. Hence:

$$
\frac{\Delta \sin (\theta)}{\Delta \theta}>\frac{\Delta \sin (\theta)}{h_{2}}=\cos (\theta+\Delta \theta) .
$$

Thus $\frac{\Delta \sin (\theta)}{\Delta \theta}$ is squeezed between $\cos (\theta)$ and $\cos (\theta+\Delta \theta)$, and the limit follows.
Here we used $\sin (\Delta \theta)<\Delta \theta<\tan (\Delta \theta)$. To show this geometrically, compare areas of three increasing regions with angle $\Delta \theta$: secant isosceles triangle $\frac{1}{2} \sin (\Delta \theta)$; sector $\frac{1}{2} \Delta \theta$; tangent right triangle $\frac{1}{2} \tan (\Delta \theta)$.

COROLLARY:
(a) $\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1$
(b) $\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}=0$.

Proof: The first limit is just the derivative of sine at zero:

$$
\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=\lim _{h \rightarrow 0} \frac{\sin (0+h)-\sin (0)}{h}=\sin ^{\prime}(0)=\cos (0)=1
$$

and similarly for the second. (Or squeeze using $\sin (h)<h<\sin (h) / \cos (h)$, proved above.)
General trigonometric derivatives. From these basic derivatives, we can compute the derivative of any trig function or combination of trig functions.

EXAMPLE: Compute the derivative of $\tan (x)$. By the Quotient Rule for derivatives (§2.3):

$$
\begin{aligned}
& \tan ^{\prime}(x)=\left(\frac{\sin (x)}{\cos (x)}\right)^{\prime}=\frac{\sin ^{\prime}(x) \cos (x)-\sin (x) \cos ^{\prime}(x)}{\cos ^{2}(x)} \\
& =\frac{\cos (x) \cos (x)-\sin (x)(-\sin (x))}{\cos ^{2}(x)}=\frac{1}{\cos ^{2}(x)}=\sec ^{2}(x),
\end{aligned}
$$

since $\cos ^{2}(x)+\sin ^{2}(x)=1$. In fact, we get the following derivatives:

$f(x)$	$\sin (x)$	$\cos (x)$	$\tan (x)$	$\sec (x)$	$\csc (x)$	$\cot (x)$
$f^{\prime}(x)$	$\cos (x)$	$-\sin (x)$	$\sec ^{2}(x)$	$\tan (x) \sec (x)$	$-\cot (x) \csc (x)$	$-\csc ^{2}(x)$

Warning: These formulas are for angle x in radians, NOT in degrees (see $\S 2.5$ end).

Limits of quotients. We can also compute trigonometric limits of the form $\frac{0}{0}$. The trick is to manipulate the numerators and denominators to get factors of the form $\frac{\sin (g(x))}{g(x)}$, where $g(x)$ is any quantity which goes to zero.

EXAMPLE: Compute $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}$. We have:

$$
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}=\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \cdot \frac{3 x}{x}=\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \cdot \lim _{x \rightarrow 0} \frac{3 x}{x}=\lim _{h \rightarrow 0} \frac{\sin (h)}{h} \cdot \lim _{x \rightarrow 0} 3=1 \cdot 3=3 .
$$

Here we use $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x}=\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1$, where we substitute* $h=g(x)=3 x$, so that $x \rightarrow 0$ forces $h \rightarrow 0$.

EXAMPLE: Compute $\lim _{x \rightarrow 0} \frac{\tan (x)}{\sin (\sqrt{x})}$. Starting with $\tan (x)=\frac{\sin (x)}{\cos (x)}$, we get:

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\tan (x)}{\sin (\sqrt{x})}=\lim _{x \rightarrow 0} \frac{1}{\cos (x)} \cdot \sin (x) \cdot \frac{1}{\sin (\sqrt{x})} \\
=\lim _{x \rightarrow 0} \frac{1}{\cos (x)} \cdot \frac{\sin (x)}{x} \cdot x \cdot \frac{\sqrt{x}}{\sin (\sqrt{x})} \cdot \frac{1}{\sqrt{x}} \\
=\lim _{x \rightarrow 0} \frac{\sqrt{x}}{\cos (x)} \cdot \frac{\sin (x)}{x} \cdot \frac{1}{\frac{\sin (\sqrt{x})}{\sqrt{x}}}=\frac{\sqrt{0}}{\cos (0)} \cdot 1 \cdot \frac{1}{1}=0,
\end{gathered}
$$

where $\lim _{x \rightarrow 0} \frac{\sin (\sqrt{x})}{\sqrt{x}}=1$ by the substitution $h=g(x)=\sqrt{x}$.

[^1]
[^0]: Notes by Peter Magyar magyar@math.msu.edu

[^1]: *By the Limit Substitution Theorem at the end of Notes §1.7.

