Chain of functions. On a Ferris wheel, your height H (in feet) depends on the angle θ of the wheel (in radians): $H=100+100 \sin (\theta)$. The wheel is turning at one revolution per minute, meaning the angle at t minutes is $\theta=2 \pi t$ radians. At $t=\frac{1}{12}$, we have $\theta=\frac{\pi}{6}$ and:

$$
H=100+100 \sin (2 \pi t)=100+100 \sin \left(\frac{\pi}{6}\right)=150 \mathrm{ft} .
$$

At this moment, how fast are you rising (in $\mathrm{ft} / \mathrm{min}$)?
The answer is given by the Chain Rule, which computes the derivative for a chain of functional dependencies: one variable H depends on a second variable θ, which depends on a third variable t. The Rule states:

$$
\begin{aligned}
\frac{d H}{d t} & =\frac{d H}{d \theta} \cdot \frac{d \theta}{d t} \\
\frac{\mathrm{ft}}{\min } & =\frac{\mathrm{ft}}{\mathrm{rad}} \cdot \frac{\mathrm{rad}}{\min }
\end{aligned}
$$

The rate of change of height with respect to angle is:

$$
\begin{aligned}
\frac{d H}{d \theta} & =\frac{d}{d \theta}(100+100 \sin (\theta))=0+100 \sin ^{\prime}(\theta) \\
& =100 \cos (\theta)=100 \cos \left(\frac{\pi}{6}\right) \cong 86.6 \frac{\mathrm{ft}}{\mathrm{rad}}
\end{aligned}
$$

The rate of change of angle with respect to time is:

$$
\frac{d \theta}{d t}=\frac{d}{d t}(2 \pi t)=2 \pi \cong 6.28 \frac{\mathrm{rad}}{\mathrm{~min}}
$$

Thus, the Chain Rule says the rate of change of height with respect to time is the product:

$$
\frac{d H}{d t} \cong 86.6 \frac{\mathrm{ft}}{\mathrm{rad}} \times 6.28 \frac{\mathrm{rad}}{\min } \cong 544 \frac{\mathrm{ft}}{\min } .
$$

Your rate of rise is about 544 feet per minute, at time $t=\frac{1}{12}$.
Chain Rule: Let y, u, x be variables related by $y=f(u)$ and $u=g(x)$, so that $y=f(g(x))$. Then, in Leibnitz notation:

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

or in Newton notation:

$$
f(g(x))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

This holds at any value of x where $g^{\prime}(x)$ and $f^{\prime}(g(x))$ are both defined.

The function $f(g(x))$ is called the composition of f following g, sometimes denoted $f \circ g$, so that we may write $f(g(x))^{\prime}$ as $(f \circ g)^{\prime}(x)$.
Proof.* First we assume that the value $g(a)$ is different from all other nearby output values $g(x)$: that is, for x close enough (but unequal) to a, we have $g(x) \neq g(a)$. Then we compute, using the alternative definition of derivative:

$$
\begin{gathered}
(f \circ g)^{\prime}(a)=\left.\frac{d}{d x} f(g(x))\right|_{x=a}=\lim _{x \rightarrow a} \frac{f(g(x))-f(g(a))}{x-a} \\
=\lim _{x \rightarrow a} \frac{f(g(x))-f(g(a))}{g(x)-g(a)} \cdot \lim _{u \rightarrow a} \frac{g(x)-g(a)}{x-a} \\
=\lim _{u \rightarrow g(a)} \frac{f(u)-f(g(a))}{u-g(a)} \cdot \lim _{u \rightarrow a} \frac{g(x)-g(a)}{x-a} \\
=f^{\prime}(g(a)) \cdot g^{\prime}(a)
\end{gathered}
$$

Here we used the Limit Substitution Theorem from Notes $\S 1.7$, substituting u for $g(x)$ so that $x \rightarrow a$ forces $u \rightarrow g(a)$. (Since $g(x)$ is differentiable at $x=a$, it is also continuous.)

Finally, if there is a sequence of inputs $x_{1}, x_{2}, \cdots \rightarrow a$ with $g\left(x_{i}\right)=g(a)$, then we clearly have $g^{\prime}(a)=0$, and the right side of our formula becomes $f^{\prime}(g(a)) \cdot g^{\prime}(a)=0$. On the left side, we have values $\left(f\left(g\left(x_{i}\right)\right)-f(g(a))\right) /\left(x_{i}-a\right)=0$, which is consistent with the desired limit $(f \circ g)^{\prime}(a)=0$, and the previous argument is still valid when restricted to the set of x with $g(x) \neq g(a)$.

Differentiation Rules. Along with our previous Derivative Rules from Notes $\S 2.3$, and the Basic Derivatives from Notes $\S 2.3$ and $\S 2.4$, the Chain Rule is the last fact needed to compute the derivative of any function defined by a formula.
EXAMPLE: Find the derivative of $\left(x+\frac{1}{x}\right)^{10}$. First, we use Leibnitz notation: let $y=u^{10}$ and $u=x+\frac{1}{x}$, so that $y=\left(x+\frac{1}{x}\right)^{10}$. Then:

$$
\begin{aligned}
\frac{d y}{d x}= & \frac{d y}{d u} \cdot \frac{d u}{d x}=\frac{d}{d u}\left(u^{10}\right) \cdot \frac{d}{d x}\left(x+\frac{1}{x}\right)=10 u^{9} \cdot \frac{d}{d x}\left(x+x^{-1}\right) \\
& =10\left(x+\frac{1}{x}\right)^{9} \cdot\left(1+\left(-1 x^{-2}\right)\right)=10\left(x+\frac{1}{x}\right)^{9}\left(1-\frac{1}{x^{2}}\right)
\end{aligned}
$$

Next, we redo this in Newton notation, without introducing new letters y, u. Let $f(x)=x^{10}$ with $f^{\prime}(x)=10 x^{9}$, and $g(x)=x+\frac{1}{x}=x+x^{-1}$ with $g^{\prime}(x)=1-x^{-2}=$ $1-\frac{1}{x^{2}}$, so that:

$$
f(g(x))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)=10\left(x+\frac{1}{x}\right)^{9}\left(1-\frac{1}{x^{2}}\right)
$$

A third way (the quickest in practice) is to think of the composite function as an outside function out $=()^{10}$ wrapped around an inside function $i n=x+\frac{1}{x}$, so the Chain Rule becomes:

$$
\text { out }(i n)^{\prime}=\text { out }^{\prime}(i n) \cdot i n^{\prime}
$$

[^0]Here out ${ }^{\prime}=10()^{9}$, so:

$$
\operatorname{out}(\text { in })^{\prime}=10\left(x+\frac{1}{x}\right)^{9} \cdot\left(x+\frac{1}{x}\right)^{\prime}=10\left(x+\frac{1}{x}\right)^{9} \cdot\left(1-\frac{1}{x^{2}}\right)
$$

example: For any function $u=g(x)$, and any number n, we have:

$$
\frac{d}{d x}\left(u^{n}\right)=n u^{n-1} \frac{d u}{d x} \quad \text { and } \quad\left(g(x)^{n}\right)^{\prime}=n g(x)^{n-1} g^{\prime}(x) .
$$

EXAMPLE: Find the derivative of $\frac{1}{\sqrt{x \cos (x)}}$. Here the outer function is out $=\frac{1}{\sqrt{ }}=$ ()$^{-1 / 2}$ with out ${ }^{\prime}=-\frac{1}{2}()^{-3 / 2}$. Thus:

$$
\begin{gathered}
\left(\frac{1}{\sqrt{x \cos (x)}}\right)^{\prime}=-\frac{1}{2}(x \cos (x))^{-3 / 2} \cdot(x \cos (x))^{\prime} \\
=-\frac{1}{2}(x \cos (x))^{-3 / 2} \cdot\left((x)^{\prime} \cos (x)+x \cos ^{\prime}(x)\right)=-\frac{1}{2}(x \cos (x))^{-3 / 2}(\cos (x)-x \sin (x))
\end{gathered}
$$

Here we used the Chain Rule, then the Product Rule.
EXAMPLE: Compare the derivatives of $\sin \left(x^{2}\right)$ and $\sin ^{2}(x)$. Note that if $f(x)=\sin (x)$ and $g(x)=x^{2}$, we have $\sin \left(x^{2}\right)=f(g(x))$, but $\sin ^{2}(x)=g(f(x))$. Thus:

$$
\begin{gathered}
\left(\sin \left(x^{2}\right)\right)^{\prime}=\sin ^{\prime}\left(x^{2}\right) \cdot\left(x^{2}\right)^{\prime}=\cos \left(x^{2}\right) \cdot 2 x=2 x \cos \left(x^{2}\right) \\
\left(\sin ^{2}(x)\right)^{\prime}=\left((\sin (x))^{2}\right)^{\prime}=2(\sin (x)) \cdot \sin ^{\prime}(x)=2 \sin (x) \cos (x)
\end{gathered}
$$

EXAMPLE: Find the derivative of $\sin \left(\tan \left(\frac{x}{x+1}\right)\right)$, a composition of three functions. We start by applying the Chain Rule to the outermost function $\sin ()$, with inner function $\tan \left(\frac{x}{x+1}\right)$; then we use the Chain Rule again on this.

$$
\begin{gathered}
\left(\sin \left(\tan \left(\frac{x}{x+1}\right)\right)\right)^{\prime}=\sin ^{\prime}\left(\tan \left(\frac{x}{x+1}\right)\right) \cdot\left(\tan \left(\frac{x}{x+1}\right)\right)^{\prime} \\
=\sin ^{\prime}\left(\tan \left(\frac{x}{x+1}\right)\right) \cdot \tan ^{\prime}\left(\frac{x}{x+1}\right) \cdot\left(\frac{x}{x+1}\right)^{\prime} \\
=\sin ^{\prime}\left(\tan \left(\frac{x}{x+1}\right)\right) \cdot \tan ^{\prime}\left(\frac{x}{x+1}\right) \cdot \frac{(x)^{\prime}(x+1)-x(x+1)^{\prime}}{(x+1)^{2}} \\
=\cos \left(\tan \left(\frac{x}{x+1}\right)\right) \cdot \sec ^{2}\left(\frac{x}{x+1}\right) \cdot \frac{(x+1)-x}{(x+1)^{2}}
\end{gathered}
$$

The last factor uses the Quotient Rule.
EXAMPLE: What if we apply the Chain Rule to a complicated constant like π^{3}, where we consider x^{3} as the outside function and the constant function $p(x)=\pi$ as the inside? Then:

$$
\left(\pi^{3}\right)^{\prime}=3 \pi^{2} \cdot(\pi)^{\prime}=3 \pi^{2} \cdot 0=0
$$

since $(\pi)^{\prime}=c^{\prime}=0$. Any expression with no variable in it is constant, with derivative zero.

Degrees versus radians. In higher mathematics, we always use radian measure (full circle $=2 \pi$ radians) ${ }^{\dagger}$, so that $\sin (x)$ always means sine of x radians. This is essential to get the formula $\sin ^{\prime}(x)=\cos (x)$.

The sine with input x in degrees (full circle $=360 \mathrm{deg}$) is actually a different function, which we can denote as $\sin _{\text {deg }}(x)$. Remember that a function is a rule which converts input numbers to output numbers: it does not know that we interpret some numbers as angles, or what their units should be. Since $\sin (x)$ and $\sin _{\text {deg }}(x)$ produce different outputs from a given number x, they are different functions. In fact, we have:

$$
\sin _{d e g}(x)=\sin \left(\frac{2 \pi}{360} x\right) .
$$

The inside operation converts x from degrees to radians, then feeds this into the ordinary (radian) sine function.

This makes a crucial difference in the derivative:

$$
\sin _{\text {deg }}^{\prime}(x)=\left(\sin \left(\frac{2 \pi}{360} x\right)\right)^{\prime}=\cos \left(\frac{2 \pi}{360} x\right) \cdot\left(\frac{2 \pi}{360} x\right)^{\prime}=\cos _{\text {deg }}(x) \cdot\left(\frac{2 \pi}{360}\right) .
$$

This is why we stay away from degree measure in calculus!

[^1]
[^0]: *For another proof based on linear approximations, see the Stewart text $\S 2.5$, p. 153.

[^1]: ${ }^{\dagger}$ The geometric definition is that an angle of x radians spans an arc of length x radius-lengths, or $x r$. Thus, 2π radians spans an arc of length $2 \pi r$, meaning the circumference of the full circle.

