Explicit versus implicit functions. Given the circle defined by the equation $x^{2}+y^{2}=25$, suppose we wish to find the tangent line at the point $(x, y)=(3,4)$. Calculus finds a tangent slope of a function graph $y=f(x)$ as a derivative $f^{\prime}(a)=\left.\frac{d f}{d x}\right|_{x=a}$; but there is no function specified in our problem.

Rather, we must interpret x as an independent variable, which implicitly makes y a function of x : to make this explicit, we solve the equation for y, giving $y= \pm \sqrt{25-x^{2}}$. That is, the circle is the union of two function graphs, $y=\sqrt{25-x^{2}}$ and $y=-\sqrt{25-x^{2}}$, each over the domain $x \in[-5,5]$.

The given point $(3,4)$ is on the top graph, and we differentiate its explicit function:

$$
\frac{d y}{d x}=\frac{d}{d x} \sqrt{25-x^{2}}=\frac{d}{d x}\left(25-x^{2}\right)^{\frac{1}{2}}=\frac{1}{2}\left(25-x^{2}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(25-x^{2}\right)=\frac{-x}{\sqrt{25-x^{2}}} .
$$

Here we used the Chain Rule with outside function ($)^{1 / 2}$. At our point, we have tangent slope $\left.\frac{d y}{d x}\right|_{x=3}=y^{\prime}(3)=\frac{-3}{\sqrt{25-3^{2}}}=-\frac{3}{4}$, and the tangent line $y=-\frac{3}{4}(x-3)+4$.

Implicit differentiation is a smoother way to do this problem. Instead of solving the equation for y, we assume $y=y(x)$ for some unkown function $y(x)$ which satisfies the equation $x^{2}+y(x)^{2}=25$. Then we differentiate both sides using the Rules:

$$
\begin{aligned}
\left(x^{2}+y(x)^{2}\right)^{\prime} & =(25)^{\prime} \\
\left(x^{2}\right)^{\prime}+\left(y(x)^{2}\right)^{\prime} & =0 \\
2 x+2 y(x) y^{\prime}(x) & =0 .
\end{aligned}
$$

Note that $\left(x^{2}\right)^{\prime}=2 x$ is a Basic Derivative, but for $\left(y^{2}\right)^{\prime}$, we need the Chain Rule with outside function ()2 and inside function $y=y(x)$. The derivative $y^{\prime}(x)$ is the unknown we are trying to find, and now we can solve for it: $y^{\prime}(x)=-\frac{x}{y(x)}$, which was easier than solving for the original $y(x)$. Since are considering the point $(x, y)=(3,4)$, we must have $y(3)=4$, so that $\left.\frac{d y}{d x}\right|_{x=3}=y^{\prime}(3)=-\frac{3}{y(3)}=-\frac{3}{4}$, as before.

Note that the formula $y^{\prime}(x)=-\frac{x}{y(x)}$, or in Leibnitz notation $\frac{d y}{d x}=-\frac{x}{y}$, is valid for both of the functions defining the upper and lower half-circles. Since both functions obey the original equation, they both obey the derivative equation. For example, at $(x, y)=(3,-4)$, the slope is $y^{\prime}(3)=-\frac{3}{y(3)}=-\frac{3}{-4}=\frac{3}{4}$.

We could even take this one step further to find the second derivative implicitly:

$$
y^{\prime \prime}(x)=\left(y^{\prime}(x)\right)^{\prime}=\left(-\frac{x}{y}\right)^{\prime}=-\frac{(x)^{\prime} y-x y^{\prime}}{y^{2}}=-\frac{y-x\left(-\frac{x}{y}\right)}{y^{2}}=-\frac{y^{2}+x^{2}}{y^{3}}=-\frac{25}{y^{3}} .
$$

We used the Quotient Rule, the previous $y^{\prime}=-\frac{x}{y}$, and the original equation $x^{2}+y^{2}=25$.

Folium of Descartes. This is a curve discovered by the famous mathematician who gave us Cartesian $x y$-coordinates. It is defined by a nodal cubic equation: $x^{3}+y^{3}=9 x y$:*

We want to find the tangent line at the point $(x, y)=(2,4)$, which is on the curve because $2^{3}+4^{3}=9(2)(4)$. In this case, there is no easy way to solve for y to get an explicit function $y(x)$; indeed, over $x \in\left[0, \frac{9}{2}\right]$, the curve is the union of three function graphs.

Nevertheless, implicit differentiation works without a hitch: we assume $y=y(x)$ is some unknown function which satisfies the equation, and differentiate both sides (this time in Leibnitz notation):

$$
\begin{array}{ccc}
\frac{d}{d x}\left(x^{3}+y^{3}\right) & = & \frac{d}{d x}(9 x y) \\
\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(y^{3}\right) & = & 9\left(\frac{d}{d x}(x) y+x \frac{d}{d x}(y)\right) \\
3 x^{2}+3 y^{2} \frac{d y}{d x} & = & 9 y+9 x \frac{d y}{d x} .
\end{array}
$$

Here we used the Sum and Product Rules, then the Chain Rule. Solving for $\frac{d y}{d x}$:

$$
3 y^{2} \frac{d y}{d x}-9 x \frac{d y}{d x}=9 y-3 x^{2}, \quad \frac{d y}{d x}=\frac{9 y-3 x^{2}}{3 y^{2}-9 x}
$$

We do not know $y(x)$ explicitly, but our given point $(x, y)=(2,4)$ means that $y(2)=4$, so:

$$
\left.\frac{d y}{d x}\right|_{x=2}=\frac{9 y-3 x^{2}}{3 y^{2}-9 x}=\frac{9(4)-3\left(2^{2}\right)}{3\left(4^{2}\right)-9(2)}=\frac{4}{5} .
$$

Thus, the tangent line through the point $(2,4)$ is: $y=\frac{4}{5}(x-2)+4$.
Method for implicit differentiation. Given an equation involving variables x and y, we assume x is an independent variable and $y=y(x)$ is a dependent variable. To find the derivative $\frac{d y}{d x}$:

1. Take the derivative of both sides of the equation, using the Chain Rule for expressions involving $y=y(x)$ as the inside function.
2. Solve the derivative equation for the unknown $\frac{d y}{d x}$, in terms of x and y.
3. To get a specific value $y^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}$, plug in the known values $x=a$ and $y=y(a)$.
[^0]
[^0]: *To find points satisfying this equation, substitute $y=t x$ for a new variable t, and solve for x, giving: $x=\frac{9 t}{1+t^{3}}$ and $y=\frac{9 t^{2}}{1+t^{3}}$. Then each value of t gives a point (x, y) on the curve: this is called a parametrization.

