
Math 132 Rates of Change Stewart §2.7

Conceptual levels. Mathematics solves problems partly with technical tools like the
differentiation rules, but its most powerful method is to translate between different levels
of meaning, transforming the problems to make them accessible to our tools. Problems
often originate at the physical or geometric levels, and we translate to the numerical or
algebraic levels to solve them, then we translate the answer back to the original level.

Our key concept so far has been the derivative, with the following meanings:

• Physical: For a function y = f(x), the derivative dy
dx = f ′(x) is the rate of change

of y with respect to x, near a particular value of x. For a a particular input, f ′(a)
means how fast f(x) changes from f(a) per unit change in x away from a. This is
the main importance of derivatives.

• Geometric: For a graph y = f(x), the derivative f ′(a) is the slope of the tangent
line at the point (a, f(a)).

• Numerical: We approximate the derivative by the difference quotient:

f ′(a) ∼= ∆f
∆x = f(a+h)−f(a)

h .

The right side is the average rate of change of f(x) from x = a to x = a+h, for
some small increment such as h = 0.1. As ∆x = h → 0, the difference quotient
approaches the instantaneous rate of change, the derivative f ′(a).

• Algebraic: We can easily compute the derivative of almost any function defined
by a formula. Basic Derivatives like (xp)′= pxp−1, sin′(x) = cos(x), and cos′(x) =
− sin(x) are combined using the Sum, Product, Quotient, and Chain Rules for

Derivatives. Occasionally, we must go back to the definition f ′(a) = lim
h→0

f(a+h)−f(a)
h .

Functions of motion. We consider the basic physical quantities describing motion.
These are all functions of time t. (See end of §2.3.)

◦ Position or displacement s, the distance of an object past a reference point, in feet,
at time t seconds.

◦ Velocity v = ds
dt or v(t) = s′(t), how fast the position is increasing per second

(ft/sec); this is negative if position is decreasing. The speed is the magnitude |v|.

◦ Acceleration a = dv
dt = d2s

dt2
or a(t) = v′(t) = s′′(t), how fast the velocity is increas-

ing, the number of ft/sec gained each second (ft/sec2). Equivalently, this is how
fast the object is speeding up (positive) or slowing down (negative). A practical
unit is the gee ≈ 32 ft/sec2, the acceleration due to gravity in freefall (near the
Earth’s surface).

◦ Jerk j = da
dt = d3s

dt3
or j(t) = a′(t) = s′′′(t), rate of change of acceleration (ft/sec3).
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Car stopping. Consider the following velocity data from a car’s speedometer.

The velocity v(t) = s′(t) is the derivative of s(t), the distance driven or odometer
reading, so the level of the velocity graph is the slope of the distance graph. Thus s(t)
has constant slope 60 ft/sec until t = 2, then suddenly zero slope: the car has stopped.

The acceleration is the derivative a(t) = v′(t), so the slope of the velocity graph is the
level of the acceleration graph: this slope is zero, except at the very steep transition
between 2 and 2.1 sec, which makes an average slope of:

a ≈ ∆v

∆t
=

0− 60

2.1− 2
= −600ft/sec2.

What physical story do these graphs tell? The car went from about 40 mph to zero in
0.1 sec. Brakes cannot decelerate so quickly: this is a car crash. The deceleration graph
is zero for most of the time, but for a split second it is almost 20 gees, twenty times your
weight pressing you into the seatbelt.

In this analysis, we translated conceptually from graphical (geometric) to physical;
and also (for the gee calculation) from graphical to numerical to physical.



Braking techniques. Now imagine braking steadily at a traffic light, slowing at a con-
stant rate until you reach a full stop. This time the deceleration is: ∆v

∆t = 0−60
4−0 = −15 ft/sec2,

less than half a gee, but still a pretty hard stop:

Even though the deceleration is not very great, it changes suddenly (instantaneously in
our picture), so the derivative of acceleration (the jerk) is very large for a split second,
giving a noticeable jerk or jolt at the moment of stopping, not dangerous but annoying.

Is there a braking technique which will eliminate the jerk? To prevent the sudden
change in acceleration, squeeze the brake slowly down, then let it slowly up:

Now the stopping time of 4 sec requires a peak deceleration of −30 ft/sec2 ≈ 1 gee,
which would send the car skidding helter-skelter. You would need double the time to do
this technique safely, starting to brake much earlier.

Ballistic equation. This is the formula giving the height s(t) for a projectile (cannon
ball) launched from initial height s0, straight upward with initial velocity v0, pulled
down by a constant gravitational acceleration g:

s(t) = s0 + v0t− 1
2gt

2.

To justify this equation, note that the initial height is indeed s(0) = s0+v0(0)− 1
2g(02) =

s0. Also, s0, v0, g are constants, so:

v(t) = s′(t) = (s0)′ + (v0t)
′ − (1

2gt
2)′ = v0 − gt,

and the initial velocity is v(0) = v0. The acceleration is a(t) = v′(t) = −g, which is the
desired constant in the correct (downward) direction. Finally, the jerk is j(t) = a′(t) = 0,
which is correct because gravity pulls steadily and never jerks.



example: Given standard gravity of 32 ft/sec2 and initial height s0 = 5 ft, how fast
to throw a ball upward so that it stays airborne for 4 sec? The equation becomes
s(t) = 5 + v0t− 16t2, with the throw velocity v0 an unknown constant. Landing at 4 sec
means s(4) = 0, that is 5 + v0(4) − 16(42) = 0, and we can solve for v0 = 62.75 ft/sec.
(This is 62.75/1.47 ∼= 43 mph, which would require a strong arm.)

How high will the ball go from such a throw? The velocity is:

v(t) = (5 + 62.75t− 16t2)′ = 62.75− 32t.

At the instant t = t1 when the ball reaches the top of its arc, its velocity is zero. That
is: v(t1) = 62.75− 32t1 = 0 and t1 ∼= 1.96 sec. (This is not quite half the 4 sec interval,
because the ball started out at s0 = 5 ft.) The height at this instant is s(1.96) ∼= 66.5 ft.

For t < t1, the height s(t) increases, the velocity v(t) = 79− 32t is positive, the ball
moves upward; for t > t1, s(t) decreases, v(t) is negative, the ball moves downward.

Note that the graph s = 5 + 62.75t− 16t2 is a downward-curving parabola, but this
is not the trajectory of the ball, since this model ignores horizontal motion: the ball
might be going straight up and down.


