Tangent linear function. The geometric meaning of the derivative $f^{\prime}(a)$ is the slope of the tangent to the curve $y=f(x)$ at the point $(a, f(a))$. The tangent line is itself the graph of a linear function $y=L(x)$, where:

$$
L(x)=f(a)+f^{\prime}(a)(x-a) .
$$

This is correct because the line $y=f(a)+f^{\prime}(a)(x-a)$ has slope $m=f^{\prime}(a)$, and $L(a)=$ $f(a)+f^{\prime}(a)(a-a)=f(a)$, so the line passes through the point $(a, L(a))=(a, f(a))$.

The value $f^{\prime}(a)$ is not just the slope of the tangent line: it is also the slope of the graph itself, because as we zoom in toward $(a, f(a))$, the graph and the tangent line become indistinguishable*:

This suggests a further numerical meaning of the derivative: any function $f(x)$ is very close to being a linear function near a differentiable point $x=a$, so that $L(x)$ is a good approximation for $f(x)$ when x is close to a :

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a) \quad \text { for } x \approx a .
$$

Much later in $\S 11.10$ of Calculus II, we will study Taylor series, which give much better, higher-order approximations to $f(x)$.
example: Find a quick approximation for $\sqrt{1.1}$ without a calculator. Clearly, this is close to $\sqrt{1}=1$, but we want more accuracy. Take $f(x)=\sqrt{x}$, so $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}$ and $f^{\prime}(1)=\frac{1}{2}$. For x near $a=1$, we have the linear function:

$$
L(x)=f(1)+f^{\prime}(1)(x-1)=1+\frac{1}{2}(x-1),
$$

and the linear approximation:

$$
\sqrt{1.1}=f(1.1) \cong L(1.1)=1+\frac{1}{2}(0.1)=1.05
$$

A calculator gives: $\sqrt{1.1} \approx 1.049$, so our answer is correct to 2 decimal places with very little work. Furthermore, we get approximations for all other square roots near 1 for free, for example $\sqrt{0.96} \cong 1+\frac{1}{2}(0.96-1)=1-0.02=0.98$.
${ }^{*}$ By contrast, if we zoom in toward a non-differentiable point, such as $(0,0)$ for the graph $y=|x|$, the graph does not look more and more linear, but rather keeps its angular appearance.

EXAMPLE: Approximate $\sin \left(42^{\circ}\right)$ without a scientific calculator. This is clearly close to $\sin \left(45^{\circ}\right)=\frac{\sqrt{2}}{2} \approx 0.71$, so let us take $a=45^{\circ}$. Now, to use calculus with trig functions, we must always convert to radians: $a=45\left(\frac{2 \pi}{360}\right)=\frac{\pi}{4}$ rad. Thus $f^{\prime}(a)=\sin ^{\prime}\left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$, and we have the linear function:

$$
L(x)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)
$$

The linear approximation is:

$$
\sin \left(42^{\circ}\right)=\sin \left(42\left(\frac{2 \pi}{360}\right)\right) \approx L(x)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(42\left(\frac{2 \pi}{360}\right)-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(\frac{\pi}{60}\right) \approx 0.67
$$

A scientific calculator gives $\sin \left(42^{\circ}\right) \approx 0.669$, so again the linear approximation is accurate to two decimal places.

Input/output sensitivity. We rewrite the linear approximation $f(x) \approx f(a)+f^{\prime}(a)(x-a)$:

$$
\Delta f=f(x)-f(a) \approx f^{\prime}(a)(x-a)=f^{\prime}(a) \Delta x
$$

This estimates the change of output $f(x)$ away from $f(a)$, in proportion to the change of input x away from a. In Leibnitz notation, with $y=f(x)$, we write:

$$
\Delta y \approx \frac{d y}{d x} \Delta x
$$

Here we mean $\frac{d y}{d x}=\left.\frac{d y}{d x}\right|_{x=a}=f^{\prime}(a)$. If we think of Δx as an error from an intended input value $x=a$, then $\Delta f \approx f^{\prime}(a) \Delta x$ approximates the error from the intended output $f(a)$.
EXAMPLE: A disk of radius $r=5 \mathrm{~cm}$ is to be cut from a metal sheet of weight $3 \mathrm{~g} / \mathrm{cm}^{2}$. If the radius is measured to within an error of $\Delta r= \pm 0.2 \mathrm{~cm}$, what is the approximate range of error in the weight? This is the kind of error-control problem from our limit analyses in Notes $\S 1.7$, only now we have the powerful tools of calculus to give a simple answer.

The weight is the density 3 multiplied by the area πr^{2}, given by the function:

$$
W=W(r)=3 \pi r^{2} \quad \text { with } \quad W(5)=75 \pi \approx 235.6
$$

and we aim to find the error ΔW away from this intended value. Since:

$$
\frac{d W}{d r}=3 \pi(2 r)=6 \pi r \quad \text { and }\left.\quad \frac{d W}{d r}\right|_{r=5}=30 \pi
$$

we have the approximate error:

$$
\Delta W \approx \frac{d W}{d r} \Delta r=30 \pi \Delta r
$$

Thus, for $\Delta r= \pm 0.2$, we have $\Delta W \approx 30 \pi(0.2) \approx 18.8$. That is:

$$
r=5 \pm 0.2 \mathrm{~cm} \quad \Longrightarrow \quad W \approx 235.6 \pm 18.8 \mathrm{~g}
$$

The point here is not just the specific error estimate, but the formula which gives, for any small input error Δr, the resulting output error $\Delta W \approx 30 \pi \Delta r \approx 94 \Delta r$. The coefficient 30π measures the sensitivity of the output W to an error in the input r.

Differential notation. For $y=f(x)$, we rewrite a small Δx as $d x$, and we define:

$$
d y=\frac{d y}{d x} d x \quad \text { and } \quad d f=f^{\prime}(x) d x
$$

The dependent quantity $d y$ is called a differential: we can think of it as the linear approximation to Δy, as pictured below:

EXAMPLE: We can rewrite the approximation in the previous example as:

$$
\Delta W \approx d W=\frac{d W}{d r} d r=\frac{d}{d r}\left(3 \pi r^{2}\right) d r=6 \pi r d r
$$

Here $d r$ is just another notation for Δr, and the approximation $\Delta W \approx d W=6 \pi r d r$ is valid near any particular value of r, such as $r=5$ in the example.

Linear Approximation Theorem. How close is the approximation $\Delta y \approx d y$, or equivalently $f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)$? In fact, the difference between $f(x)$ and $L(x)$ is not only small compared to $\Delta x=x-a$, but usually proportional to $(\Delta x)^{2}=(x-a)^{2}$, which becomes tiny as $\Delta x \rightarrow 0$. (E.g. if $\Delta x=0.01=1 \%$, then $(\Delta x)^{2}=0.0001=1 \%$ of 1%.)

Also, the slower the slope $f^{\prime}(x)$ changes near $x=a$, the closer $y=f(x)$ is to its tangent line, and this deviation is measured by the rate of change of $f^{\prime}(x)$, namely the second derivative $f^{\prime \prime}(x)$. The following theorem gives an upper bound on the error in the linear approximation, $\varepsilon(x)=f(x)-L(x)$.

Theorem: Suppose $f(x)$ is a function such that $\left|f^{\prime \prime}(x)\right|<B$ on the interval $x \in[a-\delta, a+\delta]$. Then, for all $x \in[a-\delta, a+\delta]$, we have:

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\varepsilon(x), \quad \text { where } \quad|\varepsilon(x)|<\frac{1}{2} B|x-a|^{2} .
$$

We give the proof in $\S 3.2$ on the Mean Value Theorem.
example: For $f(x)=\sqrt{x}$ near $x=1$, we have $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}$ and $f^{\prime}(1)=\frac{1}{2}$. Also $f^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2}$ (a decreasing function), and on the interval $x \in[0.9,1.1]$, we have:

$$
\left|f^{\prime \prime}(x)\right| \leq\left|f^{\prime \prime}(0.9)\right|=\frac{1}{4}(0.9)^{-3 / 2} \approx 0.29<\frac{1}{3} .
$$

Thus we may take $B=\frac{1}{3}$ and $\frac{1}{2} B=\frac{1}{6}$, so that:

$$
\sqrt{x}=\sqrt{1}+\frac{1}{2}(x-1)+\varepsilon(x), \quad \text { where } \quad|\varepsilon(x)|<\frac{1}{6}|x-1|^{2} .
$$

For example, the error at $x=1.1$ is $|\varepsilon(1.1)|<\frac{1}{6}(0.1)^{2}<0.002$, so:

$$
\sqrt{1.1}=1+\frac{1}{2}(0.1) \pm 0.002=1.05 \pm 0.002
$$

Indeed, the calculator value $\sqrt{1.1} \approx 1.049$ lies in the error interval $(0.048,0.052)$.

