
Math 132 Extreme Values Stewart §3.1

Absolute maxima and minima. In many practical problems, we must find
the largest or smallest possible value of a function over a given interval.

Definition: For a function f(x) defined on an interval x ∈ [a, b],
an absolute maximum (or global maximum) is a point c ∈ [a, b] such
that f(c) ≥ f(x) for all x ∈ [a, b]. That is, f(c) is the largest output
value of the function at any input point in its domain. We say x = c
is a maximum point and f(c) is the maximum value.

We define an absolute minimum similarly, and both maximums and and mini-
mums are extremums∗ or extreme points. Note that the maximum value M (the
largest possible output) is unique, but f(x) could touch this value at several
input points c1, c2, . . . ∈ [a, b], all having f(c1) = f(c2) = · · · = M .

example: At left below, the function y = f(x) on the interval [a, b] has one
absolute maximum point, the left endpoint x = a with f(a) = M , so that
(a, f(a)) is the highest point on the graph; and it has two absolute minimum
points x = c1, c2 with f(c1) = f(c2) = N , so that (c1, f(c1)) and (c2, f(c2)) are
the lowest points on the graph.

Extremal Value Theorem: If f(x) is continuous on the closed, finite
interval x ∈ [a, b], then f(x) possesses at least one maximum point
and one minimum point.

A proof valid for all possible continuous functions would require sophisticated
Real Analysis concepts as in Math 320. To see that the theorem is not obvious,
consider the function y = g(x) graphed at right above. It is not continuous
because the graph has a break, so the Theorem does not guarantee an absolute
maximum; and indeed there is no absolute maximum. Instead, the function
approaches y = 3 as x → 1− (i.e. x = 1−δ for small δ > 0), but it never
actually reaches y = 3 because it suddenly drops to g(1) = 2. Thus, for any
given output g(c), we can find some slightly larger output g(1−δ) > g(c) for a
tiny δ > 0, so no g(c) is largest. However, there is an absolute min point x = 2.
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∗The Latin plurals of maximum, minimum, extremum are maxima, minima, extrema.



Local maxima and minima. A broader, but still useful, concept is that of
a local extremum: this is a point where the graph has a hill or valley, but not
necessarily the highest or lowest one.

Definition: For a function f(x) defined on an interval x ∈ [a, b], a
local maximum (or relative maximum) is a point c ∈ [a, b] such that
f(c) is the largest output value for any input point nearby x = c.

Formally, there is a small δ > 0 such that f(c) ≥ f(x) for all
x ∈ [c−δ, c+δ]; or x ∈ [a, a+δ] if c = a; or x ∈ [b−δ, b] if c = b.

Clearly, an absolute maximum must also be a local maximum. To illustrate,
the function f(x) in the figure at left above has four local maximum points, the
two endpoints and the two hill tops; and it has three local minimum points, all
valley bottoms. (The discontinuous g(x) does not have any local maxima.)

Vanishing derivatives. Calculus makes finding extremums surprisingly easy.
We have already seen a real-world example at the end of Notes §2.7, where we
asked for the maximum height of a ball whose height at time t is given by the
ballistic function s(t) = 5+79t−16t2. The ball is highest at the moment when
it passes from rising to falling and its velocity is zero: t = c with v(c) = 0,
where v(t) = s′(t) = 79 − 32t; and we solve to get c = 79

32 . That is, if t = c is
the maximum point of s(t), then s′(c) = 0.

This also makes sense graphically. If x = c is a local maximum of a function
f(x), then (c, f(c)) is most likely a hill-top of the graph y = f(x), and the
tangent line is horizontal at this point, having zero slope. But the tangent
slope is the derivative f ′(c), so if t = c is a local maximum, then f ′(c) = 0.
The same goes for a local minimum or valley-bottom.

First Derivative Theorem: If f(x) has a local maximum or minimum
at x = c, which is not an endpoint of the interval of definition, and
f(x) is differentiable at this point, then f ′(c) = 0.

Proof: Suppose f(x) has a local minimum, so f(x) ≥ f(c) for c−δ ≤ x ≤ c+δ.
For c<x≤ c+δ, we have f(x)−f(c)

x−c = +
+ ≥ 0, so f ′(c) = limx→c+

f(x)−f(c)
x−c ≥ 0.

For c−δ≤x<c, we have f(x)−f(c)
x−c = +

− ≤ 0, so f ′(c) = limx→c−
f(x)−f(c)

x−c ≤ 0.
Thus f ′(c) is both positive and negative, which can only mean f ′(c) = 0.

example: We wish to find the maxima and minima, both local and absolute,
of f(x) = x3 − x + 1 on the interval x ∈ [−1, 32 ]. Since f(x) is continuous (by
the Limit Laws), the Extremal Value Theorem guarantees there is at least one
of each type of point.



Exactly where are the hill-top and the valley-bottom points? Since f(x) is
differentiable at every point, the First Derivative Theorem means that all local
maximum and minimum points must be endpoints or solutions of f ′(x) = 0,
namely 3x2 − 1 = 0, or x = ± 1√

3
≈ ±0.58 . The graph shows that the local

maxima are the hill-top x = − 1√
3

and the right endpoint x = 3
2 , and the one

with the larger output is the absolute maximum: f(− 1√
3
) ≈ 1.4 < f(32) ≈ 2.9,

so the endpoint x = 3
2 is the absolute maximum point. Similarly, the local

minima are x = −1 and x = 1√
3

with f(−1) = 1 > f( 1√
3
) ≈ 0.61, so x = 1√

3
has the smaller output and is the absolute minimum point.

Critical points. The above example illustrates the method for identifying
all relevant candidates for the absolute maximum and minimum: the end-
points and the points where the derivative vanishes, and also possibly where
the derivative is not defined because the graph has a corner or a discontinuity.

Definition: For a function f(x), a critical point (or critical number)
is a point x = c where the derivative is either zero or the function
is not differentiable: f ′(c) = 0 or undefined.

Method for absolute maxima and minima problems.

1. Given f(x) on an interval x ∈ [a, b], determine the critcal points (critical
numbers) x = c such that f ′(c) = 0 or undefined. Be sure to consider
only those c ∈ [a, b], discarding any critical points outside the relevant
interval.

2. If f(x) is continuous, find f(x) for all critical points x = c and for the
endpoints x = a, b. Those points with the largest output are the absolute
maximum points, and those with smallest values are the absolute minima.

3. If f(x) has any discontinuity x = c, examine nearby x→ c+ and x→ c−

to see if the outputs f(x) become larger or smaller than in Step 2.

Most functions are continuous and differentiable as in the previous example,
and it is enough to perform Step 1 with f ′(c) = 0, then Step 2. Below we
illustrate some more complicated situations.



example: Not every critical point must be a local maximum or minimum. For
f(x) = x3, solving f ′(x) = 3x2 = 0 gives x = 0 as the unique critical point.
The graph (above left) has a horizontal slope which is neither a hill-top nor a
valley-bottom, but rather a stationary point, where the function pauses in its
rise. This does not derail the Method, since it only gives an extra candidate
for the absolute max/min, which will be discarded because its output value is
neither largest nor smallest over any given interval.

example: Let f(x) = |2x2 + 2x− 1|, with graph at center above. Recall that
d
dx |x| = sgn(x) = |x|

x , which is undefined when x = 0. By the Chain Rule:

f ′(x) = sgn(2x2+2x−1) · (2x2+2x− 1)′ = sgn(2x2+2x−1) · (4x+2).

Since sgn( ) is never zero, we have f ′(x) = 0 when the second factor vanishes:
4x+ 2 = 0, or x = 1

2 .
But this is not the only critical point, since we must also consider when f ′(x)

is undefined. This happens when the first factor sgn(2x2 + 2x− 1) is undefined,
namely when 2x2 + 2x− 1 = 0, or x = 1

4(−2±
√

12) by the Quadratic Formula.
These are the corners of the graph sitting on the x-axis: we must not skip
them, since they are actually the absolute minimum points.

example: Let f(x) = x2 + 1
(x−1)2on the interval x ∈ [−2, 2] (above right):

f ′(x) =
(
x2

)′
+
(
(x−1)−2

)′
= 2x+(−2)(x−1)−3(x−2)′ = 2(x4−3x3+3x2−x−1)

(x−1)3 .

We have f ′(x) = 0 when the numerator vanishes, x4−3x3+3x2−x−1 = 0, and
graphing this degree 4 polynomial gives approximate solutions x = c1 ≈ −0.38
and c2 ≈ 1.82 with f(c1) ≈ 0.67 and f(c2) ≈ 4.80. The endpoints x = ±2 give
f(−2) = 37

9 ≈ 4.11 and f(2) = 5. We might be tempted to take the largest of
these outputs as the absolute maximum, but clearly none of these is the highest
point of the graph.

We neglected to consider when f ′(x) is undefined: this is when the denom-
inator (x−1)2 = 0, or x = 1. This is a discontinuity, so by Step 3 we must con-
sider not only f(1), which is undefined, but also a small interval around x = 1.
In fact, we have a vertical asymptote, and limx→1− f(x) = limx→1+ f(x) =∞.

That is, f(x) can get as large as desired for x close enough to 1. There
is no absolute maximum. However, the rising asymptotes do not affect the
absolute minumum, which is still the smallest of the outputs at the other critical
points, namely f(c1) ≈ 0.67. Since f(x) is not continuous, the Extremal Value
Theorem does not guanrantee an absolute max or min; in fact the max does
not exist, but the min does.


