Math 132

Vertical asymptotes. We say a curve has a line as an *asymptote* if, as the curve runs outward to infinity, it gets closer and closer to the line. "Closer and closer" reminds us of limits, and indeed we have seen that x = a is a vertical asymptote of y = f(x) whenever one of the following holds:

 $\lim_{x \to a^-} f(x) = \infty \quad \lim_{x \to a^+} f(x) = \infty \quad \lim_{x \to a^-} f(x) = -\infty \quad \lim_{x \to a^+} f(x) = -\infty.$

As we saw in §1.5, ∞ has no meaning by itself; rather, the whole equation means that, as x gets closer to (but unequal to) a, the output f(x) eventually becomes higher than any given bound B, such as B = 100 or 1000 or 1 billion. Similarly, a limit equals $-\infty$ when f(x) becomes lower than -B for any large B.

At the end of §3.3, we saw how a sign chart for f'(x) can classify vertical asymptotes. We could do this with a sign chart for f(x) itself, with no derivatives. EXAMPLE: Let:

$$f(x) = \frac{x^2 - 6x + 9}{x^3 - 6x^2 + 11x - 6} = \frac{(x - 3)^2}{(x - 1)(x - 2)(x - 3)} = \frac{x - 3}{(x - 1)(x - 2)}$$

(To determine vertical asymptotes and intercepts, we always want f(x) in factored^{*} form.) In the original form, the denominator vanishes at x = 3, but we work with the cancelled form at right.

The function can only change its sign at points where f(x) = 0 (numerator = 0) or f(x) is not defined (denominator = 0), that is, x = 1, 2, 3. In the interval $x \in (-\infty, 1)$, the sign is given by a sample point like $f(0) = \frac{-2}{(-1)(-3)} = -\frac{2}{3} < 0$, so f(x) is negative; and similarly for the other intervals.

x		1		2		3	
f(x)	_	$\pm\infty$	+	$\pm\infty$	—	0	+

Each time x passes one of the sign-change candidates x = a, a factor (x-a) changes from negative to positive, and f(x) does indeed change sign.

Notes by Peter Magyar magyar@math.msu.edu

^{*} To factor the bottom, we try linear factors $x - \frac{m}{n}$, where *m* is an integer factor of the constant coefficient 6, and *n* is an integer factor of the highest coefficient 1, so $n = \pm 1, \pm 2, \pm 3, \pm 6$ and $m = \pm 1$. Trying $\frac{m}{n} = 1$, we find x-1 is a factor, since polynomial long division gives $x^3-6x^2+11x-6 = (x-1)(x^2-5x+6)$, and the quadratic is easy to factor. For a review of polynomial long division, see Khan Academy: www.khanacademy.org/math/algebra2/polynomial_and_rational/dividing_polynomials/v/polynomial-division.

Here $f(x) = \pm \infty$ just means the denominator vanishes and there is a vertical asymptote. The signs on each side of the asymptote show whether the graph shoots upward or downward: we have $\lim_{x\to 1^-} f(x) = -\infty$, $\lim_{x\to 1^+} f(x) = \infty$, $\lim_{x\to 2^+} f(x) = -\infty$.

Horzontal asymptotes. To understand the behavior of the graph over the left and right ends of the *x*-axis, we will need a new kind of limit in which *x* becomes larger and larger.

Definition:

- $\lim_{x\to\infty} f(x) = L$ means that f(x) can be forced arbitrarily close to L, closer than any given $\varepsilon > 0$, by making x > B for some B.
- $\lim_{x\to-\infty} f(x) = L$ means that f(x) can be forced arbitrarily close to L, closer than any given $\varepsilon > 0$, by making x < -B for some B.

Graphically, $\lim_{x\to\infty} f(x) = L$ means that toward the right of the x-axis, the graph y = f(x) approaches the horizontal asymptote y = L; and similarly for $\lim_{x\to-\infty} f(x) = L$ toward the left. We can even have $\lim_{x\to\infty} f(x) = \infty$, which means that the graph goes off toward the upper right of the xy-plane in an unspecified way.

The most basic $x \to \infty$ limits are the power funcitons: for a positive real number power p > 0, we have:[†]

$$\lim_{x \to \infty} x^p = \infty, \qquad \qquad \lim_{x \to \infty} \frac{1}{x^p} = 0.$$

For $x \to -\infty$, consider the rational power $p = \frac{m}{n}$ where m, n are positive integers with n odd (perhaps n = 1); then:

$$\lim_{x \to -\infty} x^{m/n} = \begin{cases} \infty & \text{for } m \text{ even} \\ -\infty & \text{for } m \text{ odd,} \end{cases} \qquad \qquad \lim_{x \to -\infty} \frac{1}{x^{m/n}} = 0.$$

[†] Proof: For any large bound C, we can force $x^p > C$ if we take x so large that $x > C^{1/p}$. For any small error tolerance $\varepsilon > 0$, we can force $|\frac{1}{x^p} - 0| < \varepsilon$ if we take x so large that $x > (\frac{1}{\varepsilon})^{1/p}$.

For example:

Based on these, we can deduce the horizontal asymptotes for any rational function (quotient of polynomials).

EXAMPLE: Continuing $f(x) = \frac{x^2-6x+9}{x^3-6x^2+11x-6}$, does y = f(x) have a horizontal asymptote? Informally, we can reason as follows. For large x (positive or negative), the value of x^2-6x+9 is relatively close to x^2 : say for x = 1000, compare $x^2-6x+9 = 9,994,009$ and $x^2 = 1,000,000$. Thus we can approximate $x^2-6x+9 \approx x^2$, which we call the *highest term* of the polynomial. Also doing this for the denominator:

$$f(x) = \frac{x^2 - 6x + 9}{x^3 - 6x^2 + 11x - 6} \approx \frac{x^2}{x^3}$$
 for large x.

Thus, $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^2}{x^3} = \lim_{x \to \pm \infty} \frac{1}{x} = 0$, and y = f(x) has the horizontal asymptote y = 0 for $x \to \infty$ and $x \to -\infty$. In the graph we drew previously, the left and right ends do indeed approach the x-axis.

Formally, we can show this from the Limit Laws by dividing numerator and denominator by the highest term in the denominator:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2 - 6x + 9}{x^3 - 6x^2 + 11x - 6} = \lim_{x \to \infty} \frac{x^2 - 6x + 9}{x^3 - 6x^2 + 11x - 6} \cdot \frac{\frac{1}{x^3}}{\frac{1}{x^3}}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{x} - \frac{6}{x^2} + \frac{9}{x^3}}{1 - \frac{6}{x} + \frac{11}{x^2} - \frac{6}{x^3}} = \frac{0 - 6(0) + 9(0)}{1 - 6(0) + 11(0) - 6(0)} = 0.$$

Warning: The informal argument is the easiest way to understand these limits, but the formal argument (dividing by the highest term) might be required for full credit on a quiz or test.

EXAMPLE: For $f(x) = \frac{3x^2 - x + 9}{5x^2 + 2x - 6}$, we take highest terms to get:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{3x^2 - x + 9}{5x^2 + 2x - 6} = \lim_{x \to \infty} \frac{3x^2}{5x^2} = \frac{3}{5}$$

Thus, y = f(x) has horizontal asymptote $y = \frac{3}{5}$ toward the right. We similarly deduce $\lim_{x \to -\infty} f(x) = \frac{3}{5}$, which means the same horizontal asymptote toward the left.

EXAMPLE: For

$$f(x) = \frac{x^2 + 3x^{7/2} - x^{-5}}{9x\sqrt{x} + 4x^2\sqrt{x}},$$

the terms in the denominator are $9xx^{1/2} = 9x^{3/2}$ and $4x^2x^{1/2} = 4x^{5/2}$, so the second is the highest term. Thus:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2 + 3x^{7/2} - x^{-5}}{9x\sqrt{x} + 4x^2\sqrt{x}} = \lim_{x \to \infty} \frac{3x^{7/2}}{4x^{5/2}}$$
$$= \lim_{x \to \infty} \frac{3}{4}x^{7/2 - 5/2} = \lim_{x \to \infty} \frac{3}{4}x = \infty,$$

which means y = f(x) has no horizontal asymptote. However, the approximation $f(x) \approx \frac{3}{4}x$ implies that the right end of the graph looks like a line with slope $\frac{3}{4}$. (See slant asymptotes in §3.5.) This function is not defined for x < 0, so there is no left end.