
Math 132 Curve Sketching Stewart §3.5

Man vs machine. In this section, we learn methods of drawing graphs by hand.
The computer can do this much better simply by plotting many points, so why
bother with our piddly sketches? One reason is that calculus tells us the critical
areas of the graph to look at: the computer might default to showing us some
uninteresting region which misses the key features. Another reason is to be able
to check the answer for yourself.

This is part of a great danger for anyone who uses mathematics. If you let
the computer do the thinking, not just the calculating, you are ready to blindly
accept any bizarre wrong answer. Then one typo error can escalate until your
scientific paper has to be retracted, your company’s expenses are ten times what
you predicted, your bridge collapses, your rocket crashes. Don’t let it happen!
Before you rely on the computer’s answer, you must check it against reasonable
expectations, qualitatively through a story or sketch, and quantitatively by plot-
ting sample points.

Slant asymptote. This means a diagonal line y = mx + b which is approached
by a graph y = f(x).∗ For example, consider the function:

f(x) =
x3 − 6x2 + 11x− 6

2x2 − 8x
.

Recall from §3.3 that to find the large-scale behavior of f(x) as x→ ±∞, we can

approximate by the highest term in numerator and denominator: f(x) ≈ x3

2x2 = 1
2x.

Thus, the right and left ends of the graph look like lines with slope 1
2 .

However, the graph does not actually approach the line y = 1
2x: there is

a vertical shift, y = 1
2x + b. To approximate better, and find the exact slant

asymptote of y = f(x), we perform polynomial long division:

1
2x− 1 rem 3x− 6

2x2 − 8x
)
x3 − 6x2 + 11x− 6

−(x3 − 4x)

−2x2 + 11x− 6
−(−2x3 + 8x)

3x− 6

This means:

x3 − 6x2 + 11x− 6 = (12x−1)(2x2−8x) + (3x−6),

so that:

f(x) =
(12x−1)(2x2−8x) + (3x−6)

2x2−8x
= 1

2x− 1 +
3x−6

2x2−8x
.

That is, we have the approximation f(x) ≈ 1
2x − 1 with error term 3x−6

2x2−8x ; but
this term gets vanishingly small:

lim
x→±∞

3x−6

2x2−8x
= lim

x→±∞

3x

2x2
= 0.
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∗That is, the difference between them vanishes as x gets large: limx→±∞ f(x)− (mx+b) = 0.



That is, as x gets larger and larger, the error term gets smaller and smaller, and
the graph y = f(x) gets closer and closer to the line y = 1

2x− 1. This is what we
mean by a slant asymptote.

For a general rational function f(x) = g(x)
h(x) , a quotient of polynomials g(x), h(x),

we use polynomial long division to get g(x) = q(x)h(x) + r(x) for a quotient poly-
nomial q(x) and a remainder polynomial r(x) having lower powers of x than h(x).
Thus:

f(x) =
g(x)

h(x)
=

q(x)h(x) + r(x)

h(x)
= q(x) +

r(x)

h(x)
.

Since the numerator r(x) is smaller than the denominator h(x), we have

limx→±∞
r(x)
h(x) = 0, and y = f(x) gets closer and closer to the curve y = q(x). If

q(x) = mx + b, then y = mx + b is a slant asymptote; otherwise, y = q(x) is an
asymptotic curve of y = f(x).

Rational function example. Referring to the Method for Graphing at the end
of this section, we apply the steps to the above function:

f(x) =
x3 − 6x2 + 11x− 6

2x2 − 8x
=

(x−1)(x−2)(x−3)

2x(x−4)
.

1. We have:

f ′(x) =
x4 − 8x3 + 13x2 + 12x− 24

2x2(x−4)2
, f ′′(x) = −3(x3 − 6x2 + 24x− 32)

x3(x−4)3
.

The domain of f(x) is all real numbers x 6= 1, 4, namely:

x ∈ (−∞, 1) ∪ (1, 4) ∪ (4,∞).

2. There is no neat way to solve f ′(x) = 0. If we computer-plot the numerator
x4−8x3+13x2+12x−24, we see 4 roots, which we can name x = a1, . . . , a4,
approximately at:

a1 ≈ −1.26, a2 ≈ 1.39, a3 ≈ 2.61, a4 ≈ 5.26 .

In §3.8, we will learn Newton’s Method to zero in on such approximate
solutions when algebraic ones are not available.

The other critical points are solutions of f ′(x) = undefined, namely the roots
of the denominator x = 0 and 4.

3. The sign chart is:

a1 a2 a3 a4
x −1.26 0 1.39 2.61 4 5.26

f ′(x) + 0 − ±∞ − 0 + 0 − ±∞ − 0 +

f(x) ↗ −2.37 ↘ ±∞ ↘ −0.05 ↗ 0.05 ↘ ±∞ ↘ 2.37 ↗
max asym min max asym min

4. To solve f ′′(x) = 0, a computer-plot of the numerator x3−6x2+24x−32 ap-
pears to show a single root at x = 2. To check this, we do polynomial long di-
vision (x3−6x2+24x−32)÷(x−2) to show the numerator is (x−2)(x2−4x+16),



where the quadratic factor has no real number roots. Thus x = 2 is the only
inflection point. (Solving f ′′(x) = undef just gives the vertical asymptotes.)

We do not need a sign chart for f ′′(x), since the concavity seen in the picture
below is forced by the known critical and inflection points: anything else
would lead to more wiggles.

5. Solving f(x) = 0 gives the x-intercepts x = 1, 2, 3. There is no y-intercept,
since the y-axis is a vertical asymptote.

6. The slant asymptote is y = 1
2x−1, computed at the beginning of this section.

7. This function does not have any of the standard symmetries in the Method.
However, the graph reveals a 180◦ rotation symmetry around the point (2, 0).
This is equivalent to the equation f(4−x) = −f(x), which can be shown from
the factored form.

8. The graph is:



Trigonometric example. Apply the Method at the end to: s(x) = x− 2 sin(x).

1. We have: s′(x) = 1− 2 cos(x) and s′′(x) = 2 sin(x). (See §2.4.)

The domain is all real numbers: x ∈ (∞,∞).

2. The critical points are solutions of s′(x) = 1 − 2 cos(x) = 0, so cos(x) = 1
2 ,

and x = 60◦ = 1
3π, or x = 2π − 1

3π = 5
3π, or any shift of these by a multiple

of 2π:
x = 1

3π ± 2nπ and 5
3π ± 2nπ for n = 0, 1, 2 . . ..

You can see this on the graph of cos(x):

There are no points with s′(x) = undefined.

3. The sign chart for s′(x) is periodic (repeating):

x · · · −5
3π −1

3π
1
3π

5
3π

7
3π

11
3 π · · ·

s′(x) · · · − 0 + 0 − 0 + 0 − 0 + 0 − · · ·
s(x) · · · ↘ −5

3π−
√

3 ↗ −1
3π+

√
3 ↘ 1

3π−
√

3 ↗ 5
3π+

√
3 ↘ 7

3π−
√

3 ↗ 11
3 π+

√
3 ↘ · · ·

· · · min max min max min max · · ·

4. The inflection points are solutions of s′′(x) = 2 sin(x) = 0, or x = nπ for any
integer n. Every multiple of π is an inflection point of y = s(x).

5. The point (0, s(0)) = (0, 0) is an x and y-intercept. From the graph, we can
see that there are two more x-intercepts, but we have no way to find them
exactly. (We can approximate by Newton’s Method §3.8.)

6. The large-scale behavior can be approximated by taking the highest or
largest term: s(x) ≈ x. However, the line y = x is not a slant asymptote,
because s(x) oscillates above and below this line, without getting closer and
closer.

7. This is an odd function, since:

s(−x) = (−x)− 2 sin(−x) = −x+ 2 sin(x) = −s(x).

Thus, the graph has 180◦ rotation symmetry around the origin.

This function is not periodic, since s(x+2π) 6= s(x), so the graph does
not have the shift-sideways translation symmetry. However, we do have
s(x+2π) = s(x)+2π, so the graph can be moved to itself by shifting sideways
and up!



8. The graph is:



Method for Graphing (detailed)

1. Determine the derivatives f ′(x) and f ′′(x) with Derivative Rules.
Determine the domain of f(x): for what x the formula makes sense.

2. Solve f ′(x) = 0 and f ′(x) = undef to find the critical points.

3. Make a sign table for f ′(x) to classify each critical point x = a:

x<a x=a x>a

local max _ f ′(x) + 0 −
f(x) ↗ f(a) ↘

local min ^ f ′(x) − 0 +

f(x) ↘ f(a) ↗
local max ∧ f ′(x) + undef −

f(x) ↗ f(a) ↘
local min ∨ f ′(x) − undef +

f(x) ↘ f(a) ↗
vert asymp ↗|↖ f ′(x) + 1

0 −
f(x) + 1

0 +

vert asymp ↗|↙ f ′(x) + 1
0 +

f(x) + 1
0 −

vert asymp ↘|↖ f ′(x) − 1
0 −

f(x) − 1
0 +

vert asymp ↘|↙ f ′(x) − 1
0 +

f(x) − 1
0 −

Here f(a) means the output value is defined; and 1
0 means a zero denomi-

nator at x = a produces ±∞ values. There other possibilities if x = a is a
discontinuity (see §1.8).

4. Solve f ′′(x) = 0 or undef to find inflection points x = a; we also require that
f ′(a) exists and is a local max/min of f ′(x). Make a sign table for f ′′(x)
if concavity is needed: f ′′(x) > 0 means concave up (smiling), f ′′(x) < 0
means concave down (frowning).

5. Solve f(x) = 0 to find the x-intercepts; and compute the y-intercept (0, f(0)).

6. Find the behavior as x→ ±∞.
• Approximate by highest terms on top and bottom to get f(x) ≈ cxp.
• For a better approximation of a rational function f(x) = g(x)

h(x) , use poly-
nomial long division to get f(x) = q(x) + r(x)

h(x) .

If f(x) = mx+ b+ r(x)
h(x) , then y = mx+ b is a slant asymptote.

In general, y = f(x) asymtotically approaches y = q(x) as x→ ±∞.

7. Check for symmetries: ways to move the graph onto itself.

• Side-to-side reflection symmetry for even function f(−x) = f(x).
examples: x2+3, x4, cos(x)
• 180◦ rotation symmetry for odd function f(−x) = −f(x).
examples: 2x, x3, sin(x)
• Shift-sideways translation symmetry for periodic f(x+c) = f(x).

examples: cos(x+2π) = cos(x), tan(x+π) = tan(x).

8. Draw all the above features on the graph.


