
Math 132 Antiderivatives Stewart §3.9

Reversing differentiation. In many problems, especially physical ones, we are
interested in some function F (x), but we only know its derivative F ′(x) = f(x).
We need to reverse the differentiation process to find the original F (x), the an-
tiderivative of f(x), also called the primitive of f(x).

For example, suppose F (t) represents the height of an object at time t, but we
only know the velocity:

F ′(t) = f(t) = t2 + 2.

What was the original F (t)? Recalling our Basic Derivative (tn)′ = ntn−1, we
realize that (13 t

3)′ = 1
3(3t2) = t2, so F (t) = 1

3 t
3 + 2t works. But this is not the

only possible answer because any constant term C disappears in the derivative, so
the general answer is:

F (t) = 1
3 t

3 + 2t + C.

This family of functions is called the general antiderivative:

The non-uniqueness of F (t) means that the velocity alone does not determine
the height. But if we know the height at just one time, for example the initial
height F (0) = 5, then we can adjust the constant C in a unique way to satisfy
this requirement:

F (0) = 1
3(03) + 2(0) + C = 5 =⇒ C = 5.

That is, F (t) = 1
3 t

3+2t+5 is the unique function with F ′(t) = t2+2 and F (0) = 5.
We have solved an initial value problem. (See the Ballistic Equation, end of §2.7.)

Generalizing we have:

Definition. F (x) is an antiderivative of f(x) means F ′(x) = f(x).

Antiderivative Theorem. Assume F (x) is some particular antideriva-
tive of f(x) for x ∈ (a, b). Then:

(a) The general antiderivative of f(x) is F (x) +C for any constant C.
There are no other antiderivatives of f(x).

(b) For any c ∈ (a, b) and any A, there is a unique antiderivative F̃ (x)
satisfying the intial value problem F̃ ′(x) = f(x) and F̃ (c) = A.
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Proof. (a) This just rephrases §3.2 Uniqueness Theorem (b). That is, if F̃ (x) is any
antiderivative, i.e. any function with F̃ ′(x) = F ′(x) = f(x), then the Uniqueness
Theorem guarantees F̃ (x) = F (x) + C for some constant C.

(b) We are given a specific antiderivative F (x) by hypothesis, so by part (a),
a general antiderivative is F̃ (x) = F (x) + C. If we require F̃ (c) = F (c) + C = A,
this determines C uniquely as C = A − F (c), so we can only have F̃ (x) =
F (x) + A− F (c). (See also §3.2 Uniqueness Theorem (c).) Q.E.D.

Antidifferentiation. This means the process of finding antiderivatives by revers-
ing the rules for derivatives from §2.3–2.4. For every Basic Derivative of the form
F ′(x) = f(x), we have a reverse Basic Antiderivative:

F (x) F ′(x) = f(x)

xn nxn−1

sin(x) cos(x)

cos(x) − sin(x)

tan(x) sec2(x)

sec(x) tan(x) sec(x)

=⇒

f(x) F (x)

xn 1
n+1x

n+1 + C

cos(x) sin(x) + C

sin(x) − cos(x) + C

sec2(x) tan(x) + C

tan(x) sec(x) sec(x) + C

Each general antiderivative has an arbitrary constant term C. Notice we do not
know an antiderivative for f(x) = 1

x = x−1, since the formula 1
−1+1x

0 does not
make sense.

We can also reverse the Derivative Rules. Since the derivative of a sum is the
sum of derivatives, the same is true for antiderivatives, and similarly for differences
and constant multiples:

f(x) = 7x3 − x
√
x +

3

x2
− 4

cos2(x)

= 7x3 − x3/2 + 3x−2 − 4 sec2(x),

F (x) = 7(14x
4)− 1

5/2x
5/2 + 3( 1

−1 x−1)− 4 tan(x) + C

= 7
4x

4 − 2
5x

2√x− 3

x
− 4 tan(x) + C.

To verify this, just differentiate F (x) to recover f(x).
We can also reverse the Chain Rule: we know (sin(3x))′ = cos(3x) · (3x)′ =

3 cos(3x), so what F (x) will have F ′(x) = cos(3x)?

f(x) = cos(3x) =⇒ F (x) = 1
3 sin(3x) + C.

On the other hand, the derivative of a product is NOT the product of deriva-
tives (§2.3), so the antiderivative of a product is NOT the product of antideriva-
tives. (Similarly for quotients.) We will learn how to handle these later, but for
now, we can sometimes antidifferentiate products or quotients if we can expand
them into sums of Basic Antiderivatives.

f(x) =
x+4√

x
=

x√
x

+
4√
x

= x1/2 + 4x−1/2

F (x) = 1
3/2x

3/2 + 4( 1
1/2x

1/2) + C = 2
3x
√
x + 8

√
x + C.



example. Find the antiderivative of f(x) = sin2(x). This is a product of sin(x)
with itself, and we need to expand it somehow in terms of Basic Antiderivatives.
A clever idea: in the identity

cos(2x) = cos2(x)− sin2(x) = (1− sin2(x))− sin2(x) = 1− 2 sin2(x),

we can solve for sin2(x), so that:

f(x) = sin2(x) = 1
2 −

1
2 cos(2x),

F (x) = 1
2x−

1
2(12 sin(2x)) + C = 1

2x−
1
4 sin(2x) + C.

Second derivative initial value problem. Suppose a launching rocket reaches
height s(t) at time t. Suppose we are given the acceleration function a(t) = t+ 1,
and also height and velocity at time t = 1, namely s(1) = 10 and v(1) = 3. We
wish to find the height and velocity functions s(t) and v(t).

Rephrasing, we know velocity is the rate of change of position (i.e. height),
v(t) = s′(t), and acceleration is the rate of change of velocity, a(t) = v′(t) = s′′(t).
Thus, we must solve the initial value problem:

s′′(t) = t + 1, s(1) = 10, s′(1) = 3.

First, we antidifferentiate a(t) = t + 1 to get v(t) = 1
2 t

2 + t + C. Thus, we have:

v(1) = 1
2(12) + 1 + C = 3,

which we can solve to get C = 3
2 , so that:

v(t) = s′(t) = 1
2 t

2 + t + 3
2 .

Next we antidifferentiate v(t) to get:

s(t) = 1
2(13 t

3) + 1
2 t

2 + 3
2 t + B = 1

6 t
3 + 1

2 t
2 + 3

2 t + B,

where B is another constant (different from the previous C). Again, we can solve:

s(1) = 1
6(13) + 1

2(12) + 3
2(1) + B = 10 =⇒ B = 47

6 .

The final answer is:
s(t) = 1

6 t
3 + 1

2 t
2 + 3

2 t + 47
6 .

This is the unique solution, with no arbitrary constants.


