
Math 132 Area and Distance Stewart §4.1/I

Review. The derivative of y = f(x) has four levels of meaning:

• Physical: If y is a quantity depending on x, the derivative dy
dx |x=a is the rate

of change of y per tiny change in x away from a.

• Geometric: f ′(a) is the slope of the graph y = f(x) near the point (a, f(a)),
or the slope of the tangent line at that point, y = f(a) + f ′(a)(x−a).

• Numerical: Approximate by the difference quotient, f ′(a) ≈ ∆f
∆x = f(x)−f(a)

x−a
for x near a. This gives the linear approximation f(x) ≈ f(a)+f ′(a)(x−a).

• Algebraic: Defining f ′(a) = lim
x→a

f(x)−f(a)
x−a = lim

h→0

f(a+h)−f(a)
h , we prove Basic

Derivatives and Derivative Rules to find f ′(x) for any formula f(x).

Problems usually originate on the physical or geometric levels, then we trans-
late them to the numerical or algebraic levels to solve them. For example, to find
the hill tops of a given curve y = f(x), a geometric problem, we consider that
they must have horizontal tangents, so we take the derivative f ′(x) and solve for
the critical points f ′(x) = 0 algebraically, or numerically with Newton’s Method.

In the previous chapter §3.9, we introduced the reverse of the derivative, the
antiderivative. In this chapter, we will see that it has all the above levels of
meaning, and connecting them will allow us to solve many new problems.

Distance problem. In §3.9, we reversed the algebraic derivative operation: that
is, we could often recognize a given a function f(x) as the derivative of some
familiar function F (x), obtaining an algebraic antiderivative. But this does not
always work: there are many functions which are not the derivative of any formula
we know, for example f(x) = 1

x or
√
x3+1 or sin(x2).∗

Let us consider this on the physical level: if we take f(t) = v(t) to be a
velocity function, then the antiderivative should be the corresponding position
function F (t) = s(t), since velocity is the rate of change of position, s′(t) = v(t).
Imagine a toy car on a track which starts out at time t = 0 at the starting line
s(0) = 0, and adjusts its velocity according to v(t). Even if we have no algebraic
formula for s(t), nevertheless the car does have a position, so there must exist an
antiderivative, a new function we have not imagined before.

To compute this new position function s(t), we work numerically, taking a
limit of approximations as we did in computing the derivative ds

dt = lim∆t→0
∆s
∆t .

To illustrate, we take the simple velocity function v(t) = t2, and compute s(2),
the distance traveled from t = 0 to t = 2:

s′(t) = v(t) = t2, s(0) = 0, s(2) = ??

Since distance = velocity× time, we can say very roughly:

s(2) ≈ v(2) ∆t = 22 (2−0) = 8.
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∗We will eventually learn that 1

x
is the derivative of the logarithm log(x), but the others really

are not the derivative of any formula.



This would be exact if the velocity held constant at v(2) = 4 for the whole time,
but in fact the car starts from a standstill v(0) = 0, so this is a gross overestimate.

For a good approximation, we split the time interval [0, 2] into n = 20 incre-
ments† of size ∆t = 0.1, with dividing points:

0.0 < 0.1 < 0.2 < · · · < 1.8 < 1.9 < 2.0.

We approximate a distance increment during each time increment, and add these
up to get the total distance traveled; this is called a Riemann sum:

s(2) ≈ v(0.1)∆t+ v(0.2)∆t+ · · ·+ v(1.9) ∆t+ v(2.0) ∆t

= (0.1)2 (0.1) + (0.2)2 (0.1) + · · ·+ (1.9)2 (0.1) + (2.0)2 (0.1)

≈ 2.9 .

Here we sample the velocity v(t) at the end of each increment: for example, the
first sample point is t = 0.1, the right endpoint of t ∈ [0.0, 0.1]. This is still
an overestimate (upper Riemann sum), since the velocity is slightly less at the
beginning of each increment than at the end.

To get an underestimate (lower Riemann sum), we should sample velocity at
the beginning of each increment, where it is smallest:

s(2) ≈ v(0.0)∆t+ v(0.1)∆t+ · · ·+ v(1.8) ∆t+ v(1.9) ∆t

= (0.0)2 (0.1) + (0.1)2 (0.1) + · · ·+ (1.8)2 (0.1) + (1.9)2 (0.1)

≈ 2.5

As we take more and more increments of smaller and smaller size, all estimates
converge on a limiting value, which is the exact position s(2).

For this simple function v(t) = t2, we can compare the numerical answers
with our known algebraic solution: s(t) = 1

3 t
3 is the unique antiderivative with

s(0) = 0, and we have:

s(2) = 1
3(23) = 8

3 ≈ 2.66.

which is indeed between the lower and upper estimates above. In fact, the average
of the two estimates is 2.9+2.5

2 = 2.7, which is the correct answer rounded to 1
decimal place.

The integral. Applied generally to any velocity v(t) over any interval t ∈ [0, b],
this method specifies the value of the position s(b) as a limit. We introduce a new
notation for this limit, the integral of v(t) from t = 0 to b:

s(b) =

∫ b

0
v(t) dt = lim

∆t→0
v(t1)∆t+ v(t2)∆t+ · · ·+ v(tn)∆t.

The integral symbol
∫

is an elongated S standing for the sum of n terms; v(t)
stands for all the sample values v(t1), . . . , v(tn); and dt suggests a very small ∆t
for larger and larger n→∞.

†Increment: a small increase, a part added.



Sometimes s(t) turns out to equal a known formula, sometimes it can only be
computed approximately to any desired accuracy. In our example, we computed
s(2) =

∫ 2
0 t

2 dt = 8
3 ≈ 2.66.

Generalizing further, suppose we are given any function f(x) which we consider
as the rate of change of an unknown function F (x) for x ∈ [a, b]. Then we may
compute the total change F (b)− F (a) by the above method: that is, we compute
the integral of f(x) from x = a to b:

F (b)− F (a) =

∫ b

a
f(x) dx = lim

∆x→0
f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn)∆x.

Here we split the interval [a, b] into n increments of size ∆x = b−a
n , and choose a

sample point in each increment: x1, x2, . . . , xn can be the left or right endpoints,
or anywhere between. Each term approximates the incremental change in F (x) as
the rate of change f(xi) times the length of the increment ∆x. Finally, we take
the limit as n→∞ and ∆x→ 0.

Cumulative effect of a varying influence. Another perspective: consider f(x)
as a varying linear influence on a variable z = F (x), meaning that a small input
increment ∆x produces an output increment ∆z ≈ f(x) ∆x. (This is the same as
f(x) ≈ ∆z

∆x ≈
dz
dx , i.e. f(x) is the rate of change of z.) Examples: velocity influences

position, acceleration influences velocity, pointwise density influences total mass,
heating influences temperature, power consumption influences total energy use.

Then
∫ b
a f(x) dx computes the cumulative effect of this influence of f(x) on z

for x ∈ [a, b], since it adds up all the ∆z-increments f(x1)∆x+ · · ·+ f(xn)∆x.

Area problem. Now we come to one of the most surprising results in mathe-
matics: the geometric interpretation of the integral. Suppose we have a function
with f(x) ≥ 0 for x ∈ [a, b], and we wish to determine the area under the graph
y = f(x) and above the interval [a, b] on the x-axis. For example, let us again take
f(x) = x2 over the interval [0, 2].

To approximate the area A, we cover it by 20 thin rectangles of width ∆x = 0.1
(below at left):



The dividing points are again 0.0 < 0.1 < · · · < 1.9 < 2.0, and each rectangle
reaches up to the graph at the right endpoint of an increment, giving heights
f(0.1), f(0.2), . . . , f(2.0). The area A under the curve is close to the total area of
the rectangles; adding up (height)×(width) for each rectangle gives:

A ≈ f(0.1) ∆x+ f(0.2) ∆x+ · · ·+ f(2.0) ∆x ≈ 2.9 .

This is an overestimate, since the rectangles slightly overshoot the curve. To get
an underestimate, we take heights at the left endpoint of each increment, fitting
the rectangles under the graph (above at right):

A ≈ f(0.0) ∆x+ f(0.1) ∆x+ · · ·+ f(1.9) ∆x ≈ 2.5 .

Clearly, this is the same computation as we did before, so it has the same answer.
That is, taking the limit of thinner and thinner rectangles gives:

A =

∫ 2

0
x2 dx.

The amazing fact is:

The area under y = x2 for x ∈ [0, 2] is the same as
the distance traveled with velocity v(t) = t2 during t ∈ [0, 2].

How to explain this bizarre coincidence? Let us fix a, take b = x to be a variable,
and consider the area above the variable interval [a, x] as a function A(x). Then
the rate of change of the area function is the height of the graph at the right
endpoint: A′(x) = f(x), since the greater the height, the taller the rightmost
incremental rectangle, and the faster A(x) increases. Thus, we can consider the
height as a rate of change, and the area as a total change, which is just what the
integral computes. Equivalently, we can consider the area as the cumulative effect
of the graph’s height.

We have seen the distance problem before in §2.7, when we related the graphs
of acceleration a(t), velocity v(t), and distance traveled s(t). We can now compute
s(t) more directly at a particular t = x as the area under the v(t) graph above the
interval t ∈ [0, x], and similarly for v(t) as the area under v(t). (For consistency,
we must look at the ft/sec scale for v(t), not mph, since t is in sec.) Starting from
a(t), this is how the v(t) and s(t) graphs were computed.



Approximating an integral. We compute the area A under one arch of f(x) =
sin2(x) to an accuracy of one decimal place:

We will compute:

A =

∫ π

0
sin2(x) dx ≈ sin2(x1) ∆x+ sin2(x2) ∆x+ · · ·+ sin2(xn) ∆x

for suitably large n, the corresponding small increment ∆x = b−a
n = π

n , and
appropriate sample points x1, . . . , xn.

To make sure of the required accuracy, we will compute an overestimate and
an underestimate (upper and lower Riemann sums). For an overestimate, we take
x1, . . . , xn so that sin2(x) is largest within each increment. These are not always
the right endpoints, because the function is decreasing on the second half of the
interval. Rather, for the increments within [0, π2 ], we take the right endpoints,
and for the increments within [π2 , π] we take the left endpoints. To get an under-
estimate, we take sample points where sin2(x) is smallest within each increment,
reversing the previous choices.

With a spreadsheet or computer algebra software, it is not difficult to take
n = 100, ∆x = 0.01π. The upper estimate is:

sin2(0.01π) (0.01π) + sin2(0.02π) (0.01π) + · · ·+ sin2(0.50π) (0.01π)

+ sin2(0.50π) (0.01π)+sin2(0.51π) (0.01π)+· · ·+sin2(0.99π) (0.01π) ≈ 1.60 .

The lower estimate is:

sin2(0.00π) (0.01π) + sin2(0.01π) (0.01π) + · · ·+ sin2(0.49π) (0.01π)

+ sin2(0.51π) (0.01π)+sin2(0.52π) (0.01π)+· · ·+sin2(1.00π) (0.01π) ≈ 1.54 .

Thus we get upper and lower bounds for our area A, and taking their average
gives our best estimate:

1.54 < A < 1.60 =⇒ A = 1.57± 0.03 .

As we have seen, the integral F (b) =
∫ b
a f(x) dx defines an antiderivative func-

tion numerically, whether or not we can find an algebraic antiderivative. But
in §3.9 we were (just barely) able to find an algebraic antiderivative: F (x) =
1
2x−

1
4 sin(2x), satisfying F (0) = 0. Since there can be only one such antideriva-

tive, we find that: ∫ π

0
sin2(x) dx = F (π) =

π

2
≈ 1.571 ,

so our numerical approximation is actually accurate to 2 decimal places.


