
Math 132 The Definite Integral Stewart §4.2

Precise definition. We have defined the integral
∫ b
a f(x) dx as a number ap-

proximated by Riemann sums. The integral is useful because, given a velocity
function, it computes distance traveled; given a graph, it computes an area be-
tween the graph and the x-axis. More generally, given a varying rate of change,
the integral computes the total change; or given a varying linear influence, the
integral computes its cumulative effect.

The parts of the notation
∫ b
a f(x) dx have their own names:

∫
is the integral

sign; a is the lower limit of integration;∗ b is the upper limit of integration; f(x)
is the integrand; and x is the variable of integration. Note that the variable of
integration is named only for convenience, and changing it does not change the
value of the integral:

∫ b
a f(x) dx =

∫ b
a f(t) dt =

∫ b
a f(r) dr.

Now we give the formal definition of integrals on the numerical level, as we did
for limits in §1.7 and derivatives in §2.1.

Definition: Given a function f(x) and numbers a ≤ b.

• For each positive integer n, we divide the interval x ∈ [a, b] into
n increments of width ∆x = b−a

n , with division points:

a < a+∆x < a+2∆x < · · · < a+n∆x = b,

and we choose sample points x1, . . . , xn with xi anywhere in the
ith increment: a+(i−1)∆x ≤ xi ≤ a+i∆x. Then we let:∫ b

a
f(x) dx = lim

n→∞

n∑
i=1

f(xi)∆x = lim
n→∞

f(x1)∆x+· · ·+f(xn)∆x.

• The function f(x) is integrable over [a, b] whenever the above limit
exists for every possible choice of sample points xi.

†

Integrable functions. Most functions are integrable unless they have a vertical
asymptote. To be precise:

Theorem: Assume f(x) is continuous for all x ∈ [a, b], except possibly
at a finite list of removable or jump discontinuities (see §1.8).

Then f(x) is integrable, meaning its Riemann sums converge to a well-

defined limit L =
∫ b
a f(x) dx for any choice of sample points.

This is proved in courses on Real Analysis.
To understand integrability better, let’s examine the non-integrable function

f(x) = 1
x2 on [a, b] = [0, 1]. (We arbitrarily set f(0) = 0 to make f(x) defined for
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∗ Here we use “limit” to mean a boundary, not a value approached by approximations.
† Even more formally,

∫ b

a
f(x) dx = L means that for any error tolerance ε > 0, there is some

lower bound N such that any Riemann sum with more than N terms is forced close to L within
an error of ε: that is, n > N forces

∣∣∑n
i=1 f(xi)∆x− L

∣∣ < ε.



all x ∈ [0, 1].) The function has a vertical asymptote discontinuity at x = 0, so
the Theorem does not apply. If we attempt to compute

∫ 1
0

1
x2 dx by a Riemann

sum with ∆x = 1−0
n = 1

n and sample points xi = a+i∆x = i
n , we get:

n∑
i=1

1
x2
i
·∆x =

n∑
i=1

n2

i2
· 1n =

n∑
i=1

n · 1
i2

= n+n
4+ · · · > n .

Thus, as n → ∞, the Riemann sum also gets larger and larger, and does not
approach a finite limit. Geometrically, this means there is an infinite area under
the curve and above the interval [0, 1] on the x-axis.

Negative integrand. So far, we have considered
∫ b
a f(x) dx with positive inte-

grand f(x) ≥ 0, in which case the integral is a positive number (in fact, an area).
Now suppose f(x) ≤ 0: our definition of the integral still makes sense, but it gives
a negative number. For example, for the constant function f(x) = −1, we have:∫ 3

1 (−1) dx = lim
n→∞

n∑
i=1

f(xi)∆x = lim
n→∞

n∑
i=1

(−1)(3−1n )

= lim
n→∞

(−2n )
n∑

i=1
1 = lim

n→∞
(−2n ) · n = −2 .

Geometrically, we think of each term f(xi) ∆x as (height)×(width) with a
“negative height” f(xi) ≤ 0, and we count this as a “negative area”. For a general

graph y = f(x) passing above and below the x-axis,
∫ b
a f(x) dx computes the

“signed area” between the graph and the interval [a, b] on the x-axis, with regions
above the x-axis counting as positive area, and regions below counting negative.

example: We could evaluate the integral
∫ 3
0 (2−x) dx with Riemann sums as

above, but it is easier geometrically. The function f(x) = 2−x has x-intercept
x = 2; it is positive for x ∈ [0, 2] and negative for x ∈ [2, 3]. Thus the integral is
the area of the triangle above [0, 2], minus the area of the triangle below [2, 3]:

But (triangle area) = 1
2(base)×(height), so

∫ 3
0 (2−x) dx = 1

2(2)(2)− 1
2(1)(1) = 3

2 .



Reversing limits of integration. If we take the limits of integration to be the
same, a = b, then ∆x = b−a

n = 0, so every Riemann sum is zero, and we get:∫ a

a
f(x) dx = 0 .

This is clear geometrically, since the area above a one-point interval [a, a] is zero.
Next, we give a meaning to switching the two limits of integration, by defining:∫ a

b
f(x) dx = −

∫ b

a
f(x) dx .

Geometrically, in
∫ a
b f(x) dx with a < b, we imagine x running backward from

b to a with a negative increment ∆x = a−b
n < 0. Since each term f(xi)∆x has

“negative width” ∆x, the integral becomes the negative of
∫ b
a f(x) dx. If f(xi) is

also negative, then both width and height are negative and the integral is positive:
for example,

∫ 1
3 (−1) dx = −

∫ 3
1 (−1) dx = −(−2) = 2.

We bother with this definition only so as to improve the Splitting Rule below.

Integral Rules. At the end of §4.1 Part 2 we gave a direct computation of
an integral as a limit of Riemann sums. In later sections, we will find much
better algebraic methods to compute integrals using the Fundamental Theorems
of Calculus. For now, we will rely on a few Basic Integrals, and the following Rules
to combine them. Let a, b, c be any points on the x-axis; f(x), g(x) any integrable
functions; and A,B,C any constants. Then we have:

• Sum:

∫ b

a
f(x)+g(x) dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx .

• Difference:

∫ b

a
f(x)−g(x) dx =

∫ b

a
f(x) dx −

∫ b

a
g(x) dx .

• Constant Multiple:

∫ b

a
C f(x) dx = C ·

∫ b

a
f(x) dx .

• Domination: If f(x) ≤ g(x), then:

∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx .

• Bounds: If A ≤ f(x) ≤ B, then: (b−a)A ≤
∫ b

a
f(x) dx ≤ (b−a)B .

• Splitting:

∫ c

a
f(x) dx =

∫ b

a
f(x) dx +

∫ c

b
f(x) dx .

Proof. The Sum, Difference, and Constant Multiple Rules follow directly from the
corresponding rules for summations in §4.1 Part 2, applied to Riemann sums.

The Bounds Rule makes sense geometrically because 0 ≤ A ≤ f(x) ≤ B
means the graph y = f(x) is above the line y = A and below y = B. Thus

the area
∫ b
a f(x) dx below y = f(x) and above [a, b] contains a rectangle with



(width)×(height) = (b−a)A, and the area is contained inside a rectangle with
(width)×(height) = (b−a)B.

Computing formally, A ≤ f(xi) ≤ B implies
∑n

i=1A∆x ≤
∑n

i=1 f(xi)∆x ≤∑n
i=1B ∆x. Hence:

n∑
i=1

A∆x =

n∑
i=1

A · b−an = (b−a)A
n

n∑
i=1

1 = (b−a)A
n · n = (b−a)A,

and similarly for the upper bound. Taking limits as n → ∞ gives the desired
inequalities. The Domination Rule is similar.

The Splitting Rule is intuitive when a ≤ b ≤ c. The interval [a, c] splits as the
union of two sub-intervals, [a, b] ∪ [b, c], so the area above [a, c] is the sum of the

areas above [a, b] and [b, c], i.e.
∫ c
a f(x) dx =

∫ b
a f(x) dx +

∫ c
b f(x) dx.

Furthermore, because of our extended definition of integrals, the Splitting Rule
is valid no matter what the relative positions of a, b, c. For example, if a ≤ c ≤ b,
then [a, b] = [a, c]∪ [c, b] and clearly

∫ c
a f(x) dx+

∫ b
c f(x) dx =

∫ b
a f(x) dx. Moving∫ b

c to the other side, we get:∫ c

a
f(x) dx =

∫ b

a
f(x) dx−

∫ b

c
f(x) dx =

∫ b

a
f(x) dx +

∫ c

b
f(x) dx ,

so the very same Splitting Rule applies:
∫ c
a f(x) dx =

∫ b
a f(x) dx +

∫ c
b f(x) dx.

Another example: if a = c, the Splitting Rule says:∫ a

a
f(x) dx =

∫ b

a
f(x) dx +

∫ a

b
f(x) dx,

which is true since both sides are zero.

Basic Integrals:∫ b

a
1 dx = b− a,

∫ b

a
x dx = 1

2b
2 − 1

2a
2,

∫ b

a
x2 dx = 1

3b
3 − 1

3a
3.

Later, we will easily evaluate these integrals by the Fundamental Theorems. For
now, we can prove them directly from the Basic Summations in §4.1 Part 2. For



the third and hardest formula, we take increment ∆x = b−a
n , sample points xi =

a + i∆x, and f(xi) = (a+i∆x)2 = a2 + 2ai∆x + i2(∆x)2, giving Riemann sum:

n∑
i=1

f(xi)∆x =
n∑

i=1

a2∆x + 2ai(∆x)2 + i2(∆x)3

= a2∆x
n∑

i=1

1 + 2a(∆x)2
n∑

i=1

i + (∆x)3
n∑

i=1

i2

= a2 (b−a)n n + 2a (b−a)2
n2

1
2n(n+1) + (b−a)3

n3
1
6n(n+1)(2n+1)

= a2(b−a) + 2a(b−a)2(12+ 1
2n) + (b−a)3(13+ 1

2n+ 1
6n2 )

Taking the limn→∞, the terms with n in the denominator disappear, and we get:∫ b

a
x2 dx = a2(b−a) + 2a(b−a)2(12) + (b−a)3(13) = 1

3b
3 − 1

3a
3.

Examples.

• Evaluate the integral: ∫ 7

−2
(3t−5)2 dt.

We use the Integral Rules to reduce the problem to Basic Integrals. Since∫
f(x)2 dx is NOT equal to (

∫
f(x) dx)2, we must expand the integrand and

apply the Sum, Difference, and Constant Multiple Rules:∫ 7
−2(3t−5)2 dt =

∫ 7
−2(9t

2 − 30t + 25) dt

= 9
∫ 7
−2 t

2 dt − 30
∫ 7
−2 t dt + 25

∫ 7
−2 1 dt

= 9
(
1
373−1

2(−2)3
)
− 30

(
1
272−1

2(−2)2
)

+ 25 (7−(−2))

= 603 .

Note that the variable of integration (t or x) is irrelevant.

• Find an upper bound for:∫ 7

−2
(3x−5)2 (1+ cos(x2)) dx.

That is, we do not ask for an exact value, only an overestimate. We know
that 1 + cos(x2) ≤ 2, so the Domination Rule gives:∫ 7

−2(3x−5)2(1+ cos(x2)) dx ≤
∫ 7
−2(3x−5)2(2) dx = 2(603) = 1206 .


