
Math 132 Substitution Method Stewart §4.5

Reversing the Chain Rule. As we have seen from the Second Fundamental
Theorem (§4.3), the easiest way to evaluate an integral

∫ b
a f(x) dx is to find an

antiderivative, the indefinite integral
∫
f(x) dx = F (x) + C, so that

∫ b
a f(x) dx =

F (b)−F (a). Building on §3.9, we will find antiderivatives by reversing our methods
of differentiation: here, we reverse the Chain Rule, F (g(x))′ = F ′(g(x)) g′(x).

For example, let us find the antiderivative:∫
x cos(x2) dx .

That is, for what function will the Derivative Rules produce x cos(x2)? We notice
an inside function g(x) = x2, and a factor x which is very close to the derivative
g′(x) = 2x. In fact, we can get the exact derivative of the inside function if we
multiply the factors by 1

2 and 2:

x cos(x2) = 1
2 cos(x2) · (2x) = 1

2 cos(x2) · (x2)′ .

This is just the kind of derivative function produced by the Chain Rule:

F (g(x))′ = F ′(g(x)) · g′(x) = F ′(x2) · (x2)′ ??
= 1

2 cos(x2) · (2x) .

We still need to find the outside function F . To remind us of the original inside
function, we write F (u), where the new variable u represents u = g(x) = x2. We
must get F ′(u) = 1

2 cos(u), an easy antiderivative:∫
1
2 cos(u) du = F (u) + C = 1

2 sin(u) + C .

Now we restore the original inside function to get our final answer:∫
1
2 cos(u) du = 1

2 sin(u) + C = 1
2 sin(x2) + C .

The Chain Rule in Leibnitz notation (§2.5) reverses and checks the above
computation. Writing y = 1

2 sin(u) and u = x2:

dy

dx
=

dy

du
· du
dx

=
d

du

(
1
2 sin(u)

)
· d

dx

(
x2
)

= 1
2 cos(u) · (2x) = 1

2 cos(x2) · (2x) = x cos(x2) .
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Substitution Method

1. Given an antiderivative
∫
h(x) dx, try to find an inside function g(x) such

that g′(x) is a factor of the integrand:

h(x) = f(g(x)) · g′(x).

This will often involve multiplying and dividing by a constant to get the
exact derivative g′(x). After factoring out g′(x), sometimes the remaining
factor needs to be manipulated to write it as a function of u = g(x).

2. Using the symbolic notation u = g(x), du =
du

dx
dx = g′(x) dx, write:∫

h(x) dx =

∫
f(g(x)) · g′(x) dx =

∫
f(u) du ,

and find the antiderivative
∫
f(u) du = F (u) + C by whatever method.

3. Restore the original inside function:∫
h(x) dx =

∫
f(u) du = F (u) + C = F (g(x)) + C .

Examples

•
∫

(3x+4)
√

3x+4 dx. The inside function is clearly u = 3x+4, du = 3 dx, so:∫
(3x+4)

√
3x+4 dx =

∫
1
3(3x+4)

√
3x+4 · 3 dx

=

∫
1
3u
√
u du = 1

3

∫
u3/2 du = 1

3
2
5u

5/2 + C = 2
15(3x+4)5/2 + C.

•
∫

x
√

3x+4 dx. Again u = 3x+4, so
√

3x+4 becomes
√
u, but we must still

express the remaining factor x in terms of u. We solve u = 3x+4 to obtain
x = 1

3u−
4
3 : that is, x = 1

3(3x+4)− 4
3 :∫

x
√

3x+4 dx =

∫
1
3(13(3x+4)−4

3)
√

3x+4 · 3 dx =

∫
1
3(13u−

4
3)
√
u du

=

∫
1
9u

3/2−4
9u

1/2 du = 1
9

2
5u

5/2−4
9

2
3u

3/2+C = 2
45(3x+4)5/2− 8

27(3x+4)3/2+C.

•
∫

sec2(
√
x)√

x
dx . We take u =

√
x = x1/2, du = 1

2x
−1/2 dx = 1

2
√
x
dx∫

sec2(
√
x)√

x
dx =

∫
2 sec2(

√
x) · 1

2
√
x
dx

=

∫
sec2(u) du = tan(u) + C = tan(

√
x) + C.

Here we use the trig integrals from §3.9.



•
∫

sin(x)

(1 + cos(x))2
dx. We cannot take the inside function u = sin(x), because

its derivative cos(x) is not a factor of the integrand. We could take u =
cos(x), but the best choice is u = 1 + cos(x), du = − sin(x) dx:∫

sin(x)

(1 + cos(x))2
dx = −

∫
1

(1 + cos(x))2
· (− sin(x)) dx

= −
∫

1

u2
du =

1

u
+ C =

1

1 + cos(x)
+ C.

•
∫

1−
√
x√

1+
√
x
dx. Take u = 1+

√
x, du = 1

2
√
x
, so

√
x = u−1, 1−

√
x = 2−u.

∫
1−
√
x√

1+
√
x
dx =

∫
1−
√
x√

1+
√
x

(2
√
x) · 1

2
√
x
dx

=

∫
2−u√

u
2(u−1) du = −2

∫
u2−3u+2√

u
du

= −2

∫
u3/2 − 3u1/2 + 2u−1/2 du = −2(25u

5/2 − 2u3/2 + 4u1/2) + C

= −4
5(1+

√
x)5/2 + 4(1+

√
x)3/2 − 8(1+

√
x)1/2 + C.

Whew! Here we did not have the derivative factor du
dx = 1

2
√
x

already present:

we had to multipy and divide by it to get du, then express the remaining
factors in terms of u. By luck, the resulting

∫
f(u) du was do-able.

•
∫

sec2(x) tan(x) dx. Here we could take u = tan(x), du = sec2(x) dx:∫
sec2(x) tan(x) dx =

∫
tan(x) · sec2(x) dx

=

∫
u du = 1

2u
2 + C = 1

2 tan2(x) + C.

Alternatively, use the inside function z = sec(x), dz = tan(x) sec(x) dx:∫
sec2(x) tan(x) dx =

∫
sec(x) · tan(x) sec(x) dx

=

∫
z dz = 1

2z
2 + C = 1

2 sec2(x) + C.

Thus 1
2 tan2(x) and 1

2 sec2(x) are two different antiderivatives, but what
about the Antiderivative Uniqueness Theorem (§3.9)? In fact, the identity
tan2(x) + 1 = sec2(x) implies:

1
2 tan2(x) + 1

2 = 1
2 sec2(x) .

These give the same antiderivative family: 1
2 tan2(x) +C = 1

2 sec2(x) +C ′ !



Substitution for definite integrals. We have, for u = g(x):∫ b

a
f(g(x)) g′(x) dx =

∫ g(b)

g(a)
f(u) du .

example:
∫ 3
2 x(1+x2)5 dx. Taking u = 1+x2, du = 2x dx:∫ 4

3
x(1+x2)5 dx =

∫ 4

3

1
2(1+x2)5 · 2x dx =

∫ 1+42

1+32

1
2u

5 du

= 1
12 u

6
∣∣u=17

u=10
= 1

12106 − 1
12176 .

Integral Symmetry Theorem: If f(x) is an odd function, meaning f(−x) =
−f(x), then

∫ a
−a f(x) dx = 0.

Proof. By the Integral Splitting Rule (§4.2), we have:∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx +

∫ a

0
f(x) dx .

Substituting u = −x, du = (−1) dx in the first term, including in the limits of
integration, and using f(−x) = −f(x), we get:∫ 0

−a
f(x) dx =

∫ 0

−a
−f(x) · (−1) dx =

∫ 0

−a
f(−x) · (−1) dx

=

∫ −0
−(−a)

f(u) du =

∫ 0

a
f(u) du = −

∫ a

0
f(u) du = −

∫ a

0
f(x) dx .

The last equality holds because the variable of integration is merely suggestive, and
can be changed arbitrarily. Therefore

∫ 0
−a f(x) dx +

∫ a
0 f(x) dx = −

∫ a
0 f(x) dx +∫ a

0 f(x) dx = 0, as desired.

example: Evaluate the definite integral
∫ π
−π x cos(x) dx. Here substitution will

not work, and it is difficult to find an antiderivative. But since (−x) cos(−x) =
−(x cos(x)), the Theorem tells us the integral must be zero.

Geometrically, the integral is the signed area between the graph and the x-axis:

Since the function f(x) = x cos(x) is odd, the graph has rotational symmetry
around the origin, and each negative area below the x-axis cancels a positive area
above the x-axis.



Application: Heart Flow Rate. In a standard medical test to measure the
rate of blood pumped by the heart, r liters/min, doctors inject a colored dye into
a vein flowing toward the heart, then measure the concentration of dye in arterial
blood as it is pumped out from the heart, c(t) mg/liter after t minutes.

Problem: Given the dye concentration function c(t), determine the flow rate r.

Let the variable ` denote the liters of blood which have flowed through the artery
since the start time. Assuming the (unknown) flow rate r is constant, we have
` = rt. Let C(`) be the dye concentration after ` liters have flowed, so that
C(`) = C(rt) = c(t).

Now, the integral
∫∞
0 C(`) d` sums up:

(mg/liter concentration)× (liter increments) = (mg increments of dye),

which computes the total amount of dye, D mg:

D =

∫ ∞
0

C(`) d`.

Performing the substitution ` = rt, d` = r dt, we have:

D =

∫ ∞
0

C(rt) r dt = r

∫ ∞
0

c(t) dt.

Then we may compute r as:

r =
D∫∞

0 c(t) dt
.

Since the total dye D is known (the amount injected), c(t) is measured by the
test, and

∫∞
0 c(t) dt can be computed by Riemann sums,∗ we obtain flow rate r.

∗ Since c(t) = 0 after all the dye has passed,
∫∞
0

c(t) dt can be cut off to a finite integral.


