Math 132 Substitution Method Stewart §4.5

Reversing the Chain Rule. As we have seen from the Second Fundamental

Theorem (§4.3), the easiest way to evaluate an integral f; f(z)dzx is to find an

antiderivative, the indefinite integral [ f(z)dx = F(z) + C, so that f: f(z)dx =

F(b)—F(a). Building on §3.9, we will find antiderivatives by reversing our methods

of differentiation: here, we reverse the Chain Rule, F(g(x)) = F'(g(x)) ¢'(z).
For example, let us find the antiderivative:

/m cos(z?) dz .

That is, for what function will the Derivative Rules produce x cos(z?)? We notice
an inside function g(z) = 2, and a factor x which is very close to the derivative
g () = 2x. In fact, we can get the exact derivative of the inside function if we
multiply the factors by % and 2:

zcos(z®) = Lcos(z?)  (22) = 1cos(z?) - (z?) .

This is just the kind of derivative function produced by the Chain Rule:

27

F(g(x)) = F'(g(z))-g'(x) = F'(z*)-(2*) = jcos(a?)-(22).
We still need to find the outside function F. To remind us of the original inside

function, we write F(u), where the new variable u represents u = g(x) = 2. We
must get F”(u) = 1 cos(u), an easy antiderivative:

/;cos(u)du = F(u)+C = isin(u)+C.
Now we restore the original inside function to get our final answer:
/ tcos(u)du = isin(u)+C = %sin(:pQ) +C.

The Chain Rule in Leibnitz notation (§2.5) reverses and checks the above
computation. Writing y = % sin(u) and u = 2%

dy  dy du  d g . 9

= Lcos(u) (2z) = Lcos(z?) (2z) = wcos(az?).
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Substitution Method

1. Given an antiderivative [h(z)dz, try to find an inside function g(x) such
that ¢'(z) is a factor of the integrand:

h(z) = f(g(2)) - g'(x).

This will often involve multiplying and dividing by a constant to get the
exact derivative ¢'(x). After factoring out ¢'(z), sometimes the remaining
factor needs to be manipulated to write it as a function of u = g(x).

d
2. Using the symbolic notation u = g(z), du = d—u dx = ¢'(x) dz, write:
x

[r@rds = [fo@)-d(@)de = [ f)au

and find the antiderivative [ f(u)du = F(u)+ C by whatever method.

3. Restore the original inside function:
/h(l’)dl’ = /f(u)du = Flu)+C = F(g(z))+C.

Examples

° f(3x+4)\/3x+4 dx. The inside function is clearly v = 3x+4, du = 3 dzx, so:

/(3x+4)\/3x+4d:1c = /§(3m+4)\/3x+4-3da@
= /éu\/ﬂdu = é/uS/Qdu = L2524 0 = Z(32+4)%2 + C.

° /:U\/ 3x+4dx. Again u = 3x+4, so v/3x+4 becomes /u, but we must still

express the remaining factor z in terms of u. We solve u = 3z+4 to obtain

x = tu—3: that is, z = $(3z+4) —

/x\/3x+4da: = /é(é(3x+4)—§)\/3w+4~3dm = /(;) —HVudu

_ /éu3/2_gu1/2 du = %%u5/2 4 2 3/2+C _ 25(3ZE—|—4)5/2—%(3$+4)3/2+C.

2
sec(\/%fx)dm' We take u = /7 = 2V/2, du = 12712 dz = ﬁdm

Ml'_ SeC2CIJ7.fU
A _/2 (V) 5=

= /sec2(u) du = tan(u) + C = tan(y/z) + C.

Here we use the trig integrals from §3.9.



. / __sin(@) dzx. We cannot take the inside function u = sin(z), because
(1 + cos(z))?

its derivative cos(z) is not a factor of the integrand. We could take u =
cos(zx), but the best choice is u = 1 + cos(z), du = — sin(x) dz:

sin(x) B T i
/(14‘005(33))26196 a _/(1+cos(x))2 ( (x))d

r=u—1, 1—y/x =2—u.

1
o/ﬁd:z Take u = 1++/x, du—Qf,

Vit

RN
/«/1—}— V1+Jx \/E) d

/12u )du = —2 “?j”+2du
u
= 2/u3/2 — 3220 2y = —2(%u5/2 _943/2 +4u1/2) +C

—%HJT”+MHJYﬂ—(HJT”+C

Whew! Here we did not have the derivative factor already present:

2f
we had to multipy and divide by it to get du, then express the remaining

factors in terms of u. By luck, the resulting [ f(u)du was do-able.

. /secQ(x) tan(z) dz. Here we could take u = tan(z), du = sec?(z) dz:

/secz(:c) tan(z) dx = /tan(x)'seCQ(:L‘) dx
= /udu = P+ C = Ltan’(z) + C.
Alternatively, use the inside function z = sec(z), dz = tan(x) sec(z) dx:

/ sec?(z) tan(z) dz = / sec(z) - tan(z) sec(x) dz

= /zdz = 1224 C = Isec’(2)+C.

Thus 3 tan?(z) and 3sec’(z) are two different antiderivatives, but what
about the Antiderivative Uniqueness Theorem (§3.9)7 In fact, the identity
tan?(z) + 1 = sec?(z) implies:

ttan®(z) + 5 = Ssec’(z).

These give the same antiderivative family: 1 tan?(z)+C = 1sec’(z)+C'!



Substitution for definite integrals. We have, for u = g(x):

b g(b)
/ floand@ae = [ Cpwan

EXAMPLE: f2 (142%)% dz. Taking u = 1+2?, du = 2x da:

4 4 1442
/ r(1+2?)° de = / t(1+2?)° - 2zdr = / 2u® du
3 3

1432

6 ‘u:17

_ 1906 _ 11+6
w10 = 12100 — 5177

Integral Symmetry Theorem: If f(x) is an odd function, meaning f(—x) =
—f(z), then [ f(z)dz =0.

Proof. By the Integral Splitting Rule (§4.2), we have:

a 0 a
r@ae = [ @aes [

Substituting u = —z, du = (—1) dz in the first term, including in the limits of
integration, and using f(—xz) = —f(x), we get:
0

0 0
J@)de = | —f(@) (-Ddz = [ f(-2) (-1)dz

_ /_:a)f(u)du _ /aof(u)du _ —/Oaf(u)du _ —/Oaf(x)dx

The last equality holds because the variable of integration is merely suggestive and
can be changed arbitrarily. Therefore ffa f@)de + [ f@)de = — [ f(z)de +
Jo f(x)da =0, as desired.

EXAMPLE: Evaluate the definite integral [z cos(z)dz. Here substitution will
not work, and it is difficult to find an antiderivative. But since (—z)cos(—z) =
—(x cos(x)), the Theorem tells us the integral must be zero.

Geometrically, the integral is the signed area between the graph and the x-axis:

NEk

¥y =X cos(x)

Since the function f(z) = xcos(z) is odd, the graph has rotational symmetry
around the origin, and each negative area below the x-axis cancels a positive area
above the z-axis.



Application: Heart Flow Rate. In a standard medical test to measure the
rate of blood pumped by the heart, r liters/min, doctors inject a colored dye into
a vein flowing toward the heart, then measure the concentration of dye in arterial
blood as it is pumped out from the heart, ¢(t) mg/liter after ¢ minutes.

PROBLEM: Given the dye concentration function ¢(t), determine the flow rate r.

Let the variable £ denote the liters of blood which have flowed through the artery
since the start time. Assuming the (unknown) flow rate r is constant, we have
¢ = rt. Let C({) be the dye concentration after ¢ liters have flowed, so that
Cl) =C(rt) = c(t).

Now, the integral fooo C(¢) d¢ sums up:

(mg/liter concentration) x (liter increments) = (mg increments of dye),

which computes the total amount of dye, D mg:

D = /OOO C(¢) de.

Performing the substitution £ = rt, d¢ = r dt, we have:

D = /OOOC(rt)rdt _ r/oooc(t)dt.

Then we may compute r as:

B D
ey dt

r

Since the total dye D is known (the amount injected), c(t) is measured by the
test, and fooo ¢(t) dt can be computed by Riemann sums,* we obtain flow rate r.

* Since ¢(t) = 0 after all the dye has passed, [;°c(t)dt can be cut off to a finite integral.



