Reversing the Chain Rule. As we have seen from the Second Fundamental Theorem (§4.3), the easiest way to evaluate an integral $\int_{a}^{b} f(x) d x$ is to find an antiderivative, the indefinite integral $\int f(x) d x=F(x)+C$, so that $\int_{a}^{b} f(x) d x=$ $F(b)-F(a)$. Building on $\S 3.9$, we will find antiderivatives by reversing our methods of differentiation: here, we reverse the Chain Rule, $F(g(x))^{\prime}=F^{\prime}(g(x)) g^{\prime}(x)$.

For example, let us find the antiderivative:

$$
\int x \cos \left(x^{2}\right) d x
$$

That is, for what function will the Derivative Rules produce $x \cos \left(x^{2}\right)$? We notice an inside function $g(x)=x^{2}$, and a factor x which is very close to the derivative $g^{\prime}(x)=2 x$. In fact, we can get the exact derivative of the inside function if we multiply the factors by $\frac{1}{2}$ and 2 :

$$
x \cos \left(x^{2}\right)=\frac{1}{2} \cos \left(x^{2}\right) \cdot(2 x)=\frac{1}{2} \cos \left(x^{2}\right) \cdot\left(x^{2}\right)^{\prime} .
$$

This is just the kind of derivative function produced by the Chain Rule:

$$
F(g(x))^{\prime}=F^{\prime}(g(x)) \cdot g^{\prime}(x)=F^{\prime}\left(x^{2}\right) \cdot\left(x^{2}\right)^{\prime} \stackrel{? ?}{=} \frac{1}{2} \cos \left(x^{2}\right) \cdot(2 x) .
$$

We still need to find the outside function F. To remind us of the original inside function, we write $F(u)$, where the new variable u represents $u=g(x)=x^{2}$. We must get $F^{\prime}(u)=\frac{1}{2} \cos (u)$, an easy antiderivative:

$$
\int \frac{1}{2} \cos (u) d u=F(u)+C=\frac{1}{2} \sin (u)+C
$$

Now we restore the original inside function to get our final answer:

$$
\int \frac{1}{2} \cos (u) d u=\frac{1}{2} \sin (u)+C=\frac{1}{2} \sin \left(x^{2}\right)+C .
$$

The Chain Rule in Leibnitz notation (§2.5) reverses and checks the above computation. Writing $y=\frac{1}{2} \sin (u)$ and $u=x^{2}$:

$$
\begin{gathered}
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\frac{d}{d u}\left(\frac{1}{2} \sin (u)\right) \cdot \frac{d}{d x}\left(x^{2}\right) \\
=\frac{1}{2} \cos (u) \cdot(2 x)=\frac{1}{2} \cos \left(x^{2}\right) \cdot(2 x)=x \cos \left(x^{2}\right) .
\end{gathered}
$$

[^0]
Substitution Method

1. Given an antiderivative $\int h(x) d x$, try to find an inside function $g(x)$ such that $g^{\prime}(x)$ is a factor of the integrand:

$$
h(x)=f(g(x)) \cdot g^{\prime}(x) .
$$

This will often involve multiplying and dividing by a constant to get the exact derivative $g^{\prime}(x)$. After factoring out $g^{\prime}(x)$, sometimes the remaining factor needs to be manipulated to write it as a function of $u=g(x)$.
2. Using the symbolic notation $u=g(x), d u=\frac{d u}{d x} d x=g^{\prime}(x) d x$, write:

$$
\int h(x) d x=\int f(g(x)) \cdot g^{\prime}(x) d x=\int f(u) d u
$$

and find the antiderivative $\int f(u) d u=F(u)+C$ by whatever method.
3. Restore the original inside function:

$$
\int h(x) d x=\int f(u) d u=F(u)+C=F(g(x))+C .
$$

Examples

- $\int(3 x+4) \sqrt{3 x+4} d x$. The inside function is clearly $u=3 x+4, d u=3 d x$, so:

$$
\begin{gathered}
\int(3 x+4) \sqrt{3 x+4} d x=\int \frac{1}{3}(3 x+4) \sqrt{3 x+4} \cdot 3 d x \\
=\int \frac{1}{3} u \sqrt{u} d u=\frac{1}{3} \int u^{3 / 2} d u=\frac{1}{3} \frac{2}{5} u^{5 / 2}+C=\frac{2}{15}(3 x+4)^{5 / 2}+C .
\end{gathered}
$$

- $\int x \sqrt{3 x+4} d x$. Again $u=3 x+4$, so $\sqrt{3 x+4}$ becomes \sqrt{u}, but we must still express the remaining factor x in terms of u. We solve $u=3 x+4$ to obtain $x=\frac{1}{3} u-\frac{4}{3}:$ that is, $x=\frac{1}{3}(3 x+4)-\frac{4}{3}$:

$$
\begin{aligned}
& \int x \sqrt{3 x+4} d x=\int \frac{1}{3}\left(\frac{1}{3}(3 x+4)-\frac{4}{3}\right) \sqrt{3 x+4} \cdot 3 d x=\int \frac{1}{3}\left(\frac{1}{3} u-\frac{4}{3}\right) \sqrt{u} d u \\
= & \int \frac{1}{9} u^{3 / 2}-\frac{4}{9} u^{1 / 2} d u=\frac{1}{9} \frac{2}{5} u^{5 / 2}-\frac{4}{9} \frac{2}{3} u^{3 / 2}+C=\frac{2}{45}(3 x+4)^{5 / 2}-\frac{8}{27}(3 x+4)^{3 / 2}+C .
\end{aligned}
$$

- $\int \frac{\sec ^{2}(\sqrt{x})}{\sqrt{x}} d x$. We take $u=\sqrt{x}=x^{1 / 2}, d u=\frac{1}{2} x^{-1 / 2} d x=\frac{1}{2 \sqrt{x}} d x$

$$
\begin{aligned}
& \int \frac{\sec ^{2}(\sqrt{x})}{\sqrt{x}} d x=\int 2 \sec ^{2}(\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} d x \\
= & \int \sec ^{2}(u) d u=\tan (u)+C=\tan (\sqrt{x})+C .
\end{aligned}
$$

Here we use the trig integrals from $\S 3.9$.

- $\int \frac{\sin (x)}{(1+\cos (x))^{2}} d x$. We cannot take the inside function $u=\sin (x)$, because its derivative $\cos (x)$ is not a factor of the integrand. We could take $u=$ $\cos (x)$, but the best choice is $u=1+\cos (x), d u=-\sin (x) d x$:

$$
\begin{gathered}
\int \frac{\sin (x)}{(1+\cos (x))^{2}} d x=-\int \frac{1}{(1+\cos (x))^{2}} \cdot(-\sin (x)) d x \\
=-\int \frac{1}{u^{2}} d u=\frac{1}{u}+C=\frac{1}{1+\cos (x)}+C
\end{gathered}
$$

- $\int \frac{1-\sqrt{x}}{\sqrt{1+\sqrt{x}}} d x$. Take $u=1+\sqrt{x}, d u=\frac{1}{2 \sqrt{x}}$, so $\sqrt{x}=u-1,1-\sqrt{x}=2-u$.

$$
\begin{gathered}
\int \frac{1-\sqrt{x}}{\sqrt{1+\sqrt{x}}} d x=\int \frac{1-\sqrt{x}}{\sqrt{1+\sqrt{x}}}(2 \sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} d x \\
=\int \frac{2-u}{\sqrt{u}} 2(u-1) d u=-2 \int \frac{u^{2}-3 u+2}{\sqrt{u}} d u \\
=-2 \int u^{3 / 2}-3 u^{1 / 2}+2 u^{-1 / 2} d u=-2\left(\frac{2}{5} u^{5 / 2}-2 u^{3 / 2}+4 u^{1 / 2}\right)+C \\
=-\frac{4}{5}(1+\sqrt{x})^{5 / 2}+4(1+\sqrt{x})^{3 / 2}-8(1+\sqrt{x})^{1 / 2}+C .
\end{gathered}
$$

Whew! Here we did not have the derivative factor $\frac{d u}{d x}=\frac{1}{2 \sqrt{x}}$ already present: we had to multipy and divide by it to get $d u$, then express the remaining factors in terms of u. By luck, the resulting $\int f(u) d u$ was do-able.

- $\int \sec ^{2}(x) \tan (x) d x$. Here we could take $u=\tan (x), d u=\sec ^{2}(x) d x$:

$$
\begin{aligned}
& \int \sec ^{2}(x) \tan (x) d x=\int \tan (x) \cdot \sec ^{2}(x) d x \\
& =\int u d u=\frac{1}{2} u^{2}+C=\frac{1}{2} \tan ^{2}(x)+C
\end{aligned}
$$

Alternatively, use the inside function $z=\sec (x), d z=\tan (x) \sec (x) d x$:

$$
\begin{gathered}
\int \sec ^{2}(x) \tan (x) d x=\int \sec (x) \cdot \tan (x) \sec (x) d x \\
=\int z d z=\frac{1}{2} z^{2}+C=\frac{1}{2} \sec ^{2}(x)+C
\end{gathered}
$$

Thus $\frac{1}{2} \tan ^{2}(x)$ and $\frac{1}{2} \sec ^{2}(x)$ are two different antiderivatives, but what about the Antiderivative Uniqueness Theorem (§3.9)? In fact, the identity $\tan ^{2}(x)+1=\sec ^{2}(x)$ implies:

$$
\frac{1}{2} \tan ^{2}(x)+\frac{1}{2}=\frac{1}{2} \sec ^{2}(x)
$$

These give the same antiderivative family: $\frac{1}{2} \tan ^{2}(x)+C=\frac{1}{2} \sec ^{2}(x)+C^{\prime}$!

Substitution for definite integrals. We have, for $u=g(x)$:

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

EXAMPLE: $\int_{2}^{3} x\left(1+x^{2}\right)^{5} d x$. Taking $u=1+x^{2}, d u=2 x d x$:

$$
\begin{gathered}
\int_{3}^{4} x\left(1+x^{2}\right)^{5} d x=\int_{3}^{4} \frac{1}{2}\left(1+x^{2}\right)^{5} \cdot 2 x d x=\int_{1+3^{2}}^{1+4^{2}} \frac{1}{2} u^{5} d u \\
=\left.\frac{1}{12} u^{6}\right|_{u=10} ^{u=17}=\frac{1}{12} 10^{6}-\frac{1}{12} 17^{6}
\end{gathered}
$$

Integral Symmetry Theorem: If $f(x)$ is an odd function, meaning $f(-x)=$ $-f(x)$, then $\int_{-a}^{a} f(x) d x=0$.
Proof. By the Integral Splitting Rule (§4.2), we have:

$$
\int_{-a}^{a} f(x) d x=\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x
$$

Substituting $u=-x, d u=(-1) d x$ in the first term, including in the limits of integration, and using $f(-x)=-f(x)$, we get:

$$
\begin{aligned}
& \int_{-a}^{0} f(x) d x=\int_{-a}^{0}-f(x) \cdot(-1) d x=\int_{-a}^{0} f(-x) \cdot(-1) d x \\
&= \int_{-(-a)}^{-0} f(u) d u=\int_{a}^{0} f(u) d u=-\int_{0}^{a} f(u) d u=-\int_{0}^{a} f(x) d x
\end{aligned}
$$

The last equality holds because the variable of integration is merely suggestive, and can be changed arbitrarily. Therefore $\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x=-\int_{0}^{a} f(x) d x+$ $\int_{0}^{a} f(x) d x=0$, as desired.
EXAMPLE: Evaluate the definite integral $\int_{-\pi}^{\pi} x \cos (x) d x$. Here substitution will not work, and it is difficult to find an antiderivative. But since $(-x) \cos (-x)=$ $-(x \cos (x))$, the Theorem tells us the integral must be zero.

Geometrically, the integral is the signed area between the graph and the x-axis:

Since the function $f(x)=x \cos (x)$ is odd, the graph has rotational symmetry around the origin, and each negative area below the x-axis cancels a positive area above the x-axis.

Application: Heart Flow Rate. In a standard medical test to measure the rate of blood pumped by the heart, r liters $/ \mathrm{min}$, doctors inject a colored dye into a vein flowing toward the heart, then measure the concentration of dye in arterial blood as it is pumped out from the heart, $c(t) \mathrm{mg} /$ liter after t minutes.
Problem: Given the dye concentration function $c(t)$, determine the flow rate r.
Let the variable ℓ denote the liters of blood which have flowed through the artery since the start time. Assuming the (unknown) flow rate r is constant, we have $\ell=r t$. Let $C(\ell)$ be the dye concentration after ℓ liters have flowed, so that $C(\ell)=C(r t)=c(t)$.

Now, the integral $\int_{0}^{\infty} C(\ell) d \ell$ sums up:

$$
(\mathrm{mg} / \text { liter concentration }) \times(\text { liter increments })=(\mathrm{mg} \text { increments of dye }),
$$

which computes the total amount of dye, $D \mathrm{mg}$:

$$
D=\int_{0}^{\infty} C(\ell) d \ell
$$

Performing the substitution $\ell=r t, d \ell=r d t$, we have:

$$
D=\int_{0}^{\infty} C(r t) r d t=r \int_{0}^{\infty} c(t) d t
$$

Then we may compute r as:

$$
r=\frac{D}{\int_{0}^{\infty} c(t) d t} .
$$

Since the total dye D is known (the amount injected), $c(t)$ is measured by the test, and $\int_{0}^{\infty} c(t) d t$ can be computed by Riemann sums, ${ }^{*}$ we obtain flow rate r.

[^1]
[^0]: Notes by Peter Magyar magyar@math.msu. edu

[^1]: ${ }^{*}$ Since $c(t)=0$ after all the dye has passed, $\int_{0}^{\infty} c(t) d t$ can be cut off to a finite integral.

