Tangents of a parametric curve. We have learned how to write a curve parametrically, as the path of a particle whose position at time t is given by two coordinate functions $(x(t), y(t))$ over a time interval $t \in[a, b]$.

Considering the curve as a track on which the particle runs, the tangent line at a point $(x(c), y(c))$ is the path the particle would take if it were suddenly released from the track at time $t=c$, keeping a constant velocity from that moment. The velocity at $t=c$ has horizontal and vertical components $\left(x^{\prime}(c), y^{\prime}(c)\right)$, giving the parametric line:

$$
\left(x(c)+x^{\prime}(c) t, y(c)+y^{\prime}(c) t\right) .
$$

This is the line which best approximates the curve near the point of tangency $(x(c), y(c))$, with the time set so that the line passes through the point at $t=0$.

We can convert this parametric line into an $x y$-equation as in $\S 10.1$. The slope is the horizontal over the vertical velocity: $m=\frac{y^{\prime}(c)}{x^{\prime}(c)}$, and we know the line passes through $(x(c), y(c))$, so we have the point-slope equation:

$$
y=\frac{y^{\prime}(c)}{x^{\prime}(c)}(x-x(c))+y(c) .
$$

Here (x, y) is a general point of the line, but $x(c), y(c), x^{\prime}(c), y^{\prime}(c)$ are constants computed from the coordinate functions of the original curve.

To further explain this, we imagine the original curve as the graph of a function $y=f(x)$, meaning $y(t)=f(x(t))$ for all t. The Chain Rule gives:

$$
y^{\prime}(t)=f^{\prime}(x(t)) \cdot x^{\prime}(t) \quad \Longleftrightarrow \quad \frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}
$$

At time $t=c$ and $x=x(c)$, this gives our previous slope formula:

$$
f^{\prime}(x(c))=\frac{y^{\prime}(c)}{x^{\prime}(c)} \quad \Longleftrightarrow \quad \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} .
$$

Tangents of a circle. We find the tangent line to $(x(t), y(t))=(2 \sin (\pi t), 2 \cos (\pi t))$ at the point $(\sqrt{2}, \sqrt{2})$. First, to picture the curve, we note:

- Since the components are $2 \sin$ and 2 cos of the same quantity, the curve is a circle of radius 2 .
- The full circle is traced by $\pi t \in[0,2 \pi]$, i.e. $t \in[0,2]$.
- The curve starts at $(x(0), y(0))=(0,2)$ on the y-axis; it moves clockwise, since the x-coordinate $2 \sin (\pi t)$ increases for small $t \geq 0$.

[^0]

To apply our formulas, we need to know the value $t=c$ at which the curve passes through the given point: $(x(t), y(t))=(\sqrt{2}, \sqrt{2})$. That is, we must solve the system of equations:

$$
\left\{\begin{array}{l}
2 \sin (\pi t)=\sqrt{2} \\
2 \cos (\pi t)=\sqrt{2}
\end{array} \quad \Longleftrightarrow \quad t=\frac{1}{4}\right.
$$

We can find a simultaneous solution to both equations precisely because the point lies on the curve. We have $\left(x^{\prime}(c), y^{\prime}(c)\right)=\left(2 \pi \cos \left(\frac{\pi}{4}\right),-2 \pi \sin \left(\frac{\pi}{4}\right)\right)=(\sqrt{2} \pi,-\sqrt{2} \pi)$, so the tangent line is:

$$
\begin{gathered}
\left(x(c)+x^{\prime}(c) t, y(c)+y^{\prime}(c) t\right)=(\sqrt{2}+\sqrt{2} \pi t, \sqrt{2}-\sqrt{2} \pi t) \\
y=\frac{y^{\prime}(c)}{x^{\prime}(c)}(x-x(c))+y(c)=\frac{\sqrt{2} \pi}{-\sqrt{2} \pi}(x-\sqrt{2})+\sqrt{2} \quad \Longleftrightarrow \quad y=-x+2 \sqrt{2}
\end{gathered}
$$

Note that each tangent to the circle is perpendicular to the corresponding radius.
Tangents of a polynomial curve. Find the tangent to $(x(t), y(t))=\left(t^{2}, t^{3}-3 t\right)$ at the point $(3,0)$. This is not a familiar curve, so to picture it, we must plot points by plugging in various values of t :

We see that the curve passes twice through the given point (3,0). Algebraically:

$$
\left\{\begin{array}{c}
t^{2}=3 \\
t^{3}-3 t=0
\end{array} \quad \Longleftrightarrow \quad t=\sqrt{3} \text { or } t=-\sqrt{3}\right.
$$

Note that $t^{3}-3 t=0$ by itself has the solutions $t=0, \pm \sqrt{3}$, but $t=0$ does not satisfy the first equation $t^{2}=3$: for time $t=0$, the curve is at $(0,0)$, not $(3,0)$.

Now we can easily find the two tangent lines: $(3+2 \sqrt{3} t, 6 t)$ and $(3-2 \sqrt{3} t, 6 t)$.
example: Which points of this curve have horizontal tangents? The tangent is horizontal when the vertical velocity is zero: $\left(t^{3}-3 t\right)^{\prime}=3 t^{2}-3=0 \Longleftrightarrow t= \pm 1$, corresponding to the points $(1,-2)$ and $(1,2)$.

Arclength. After applying derivatives to parametric curves, we now apply integrals, which compute the size or bulk of geometric objects. The most natural measure of the size of a curve is its arclength. We already computed this for graph curves $y=f(x)$ in $\S 8.1$, and now we do the more general parametric case.

We follow the general scheme for computing any measure of size of a geometric object from $\S 5.2$. We want the arclength L of a parametric curve $(x(t), y(t))$ for $t \in$ $[a, b]$. We cut the curve into n bits determined by Δt-increments of $t \in[a, b]$.

Because the bit at the sample point t_{i} is so short, it is well approximated by a straight segment, and we can use the Pythagorean Theorem to compute its length:

$$
\Delta L_{i} \approx \sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{\frac{(\Delta x)^{2}+(\Delta y)^{2}}{(\Delta t)^{2}}} \Delta t=\sqrt{\left(\frac{\Delta x}{\Delta t}\right)^{2}+\left(\frac{\Delta y}{\Delta t}\right)^{2}} \Delta t
$$

In the limit as $n \rightarrow \infty$, we get $\Delta t \rightarrow 0$ and $\frac{\Delta x}{\Delta t} \rightarrow \frac{d x}{d t}=x^{\prime}\left(t_{i}\right) ;$ similarly for $\frac{\Delta y}{\Delta t}$:

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta L_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^{2}+\left(\frac{\Delta y}{\Delta t}\right)^{2}} \Delta t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t .
$$

In Newton notation:

$$
L=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

In fact, the integrand is just the total speed of the particle at time t, combining the horizontal and vertical speeds. To be precise, L is the total distance traveled along
the curve; if the trajectory repeats its motion around a closed loop, or if it changes direction and backtracks, this is larger than the geometric length of the curve.
example: Compute the circumference length of a circle of radius r. The standard parametrization is $(x(t), y(t))=(r \cos (t), r \sin (t))$ for $t \in[0,2 \pi]$, with derivative $\left(x^{\prime}(t), y^{\prime}(t)\right)=(-r \sin (t), r \cos (t))$, and length:

$$
\begin{gathered}
L=\int_{0}^{2 \pi} \sqrt{(-r \sin (t))^{2}+(r \cos (t))^{2}} d t=\int_{0}^{2 \pi} r \sqrt{\sin ^{2}(t)+\cos ^{2}(t)} d t \\
=\int_{0}^{2 \pi} r d t=\left.r t\right|_{t=0} ^{t=2 \pi}=2 \pi r
\end{gathered}
$$

The integral is so easy because the particle travels at constant speed r. This was much harder in $\S 8.1$, using our previous formula $L=\int_{-r}^{r} \sqrt{1+f^{\prime}(x)^{2}} d x$, where $f(x)=$ $\sqrt{r^{2}-x^{2}}$.
example: Find the length of one arch of the cycloid from §10.1: $(x(t), y(t))=$ $(t-\sin (t), 1-\cos (t))$ for $t \in[0,2 \pi]$. We have $\left(x^{\prime}(t), y^{\prime}(t)\right)=(1-\cos (t), \sin (t))$, so:

$$
\begin{gathered}
L=\int_{0}^{2 \pi} \sqrt{(1-\cos (t))^{2}+(\sin (t))^{2}} d t=\int_{0}^{2 \pi} \sqrt{1-2 \cos (t)+\cos ^{2}(t)+\sin ^{2}(t)} d t \\
=\int_{0}^{2 \pi} \sqrt{2(1-\cos (t))} d t=\int_{0}^{2 \pi} 2 \sin \left(\frac{t}{2}\right) d t=8
\end{gathered}
$$

Here we used the identity $\sin \left(\frac{t}{2}\right)=\sqrt{\frac{1-\cos (t)}{2}}$.
Area. Consider a parametric curve $(x(t), y(t))$ for $t \in[a, b]$ which closes into a loop starting and ending at the point $(x(a), y(a))=(x(b), y(b))$. Then the enclosed area is:

$$
A= \pm \int_{a}^{b} y(t) x^{\prime}(t) d t=\mp \int_{a}^{b} x(t) y^{\prime}(t) d t
$$

where the signs after the two equalities are + , - if the loop travels clockwise around the region, but,-+ if it travels counterclockwise.

As an exercise, prove these formulas by slice analysis. The point is that area is added while traveling in one direction, then subtracted while traveling back.

[^0]: Notes by Peter Magyar magyar@math.msu.edu

