
Math 133 Polar Areas and Lengths Stewart §10.4

Slope in polar coordinates. We have seen that round, turny shapes are more simply
described by polar rθ-equations than by rectangular xy-equations. In this section, we use
polar equations to compute geometric information.

Thus, we consider a polar curve r = f(θ) over θ ∈ [a, b]. We split the interval θ ∈ [a, b]
into a large number n of increments, each of length ∆θ = b−a

n , with sample points θ1, . . . , θn.
Here is a typical increment of the curve over θ ∈ [θi, θi+1], showing the corresponding
increments in the coordinates:

Our first problem is to find the slope of this curve at a given θ. It is not the derivative
f ′(θ) = dr

dθ , which is the rate of change of the radius with respect to the angle. Rather,
slope is the rate of change of y = r sin(θ) = f(θ) sin(θ) with respect to x = r cos(θ) =
f(θ) cos(θ). That is:

(slope at θ) =
dy

dx
=

dy
dθ
dx
dθ

=
(f(θ) sin(θ))′

(f(θ) cos(θ))′
=

f ′(θ) sin(θ) + f(θ) cos(θ)

f ′(θ) cos(θ)− f(θ) sin(θ)
.

Area in polar coordinates. Assume r = f(θ) ≥ 0 for θ ∈ [a, b] to avoid complications
with signs, and consider the region inside the curve, defined by 0 ≤ r ≤ f(θ) for θ ∈ [a, b].
Apply Slice Analysis (§5.2), splitting the area A into n thin wedges ∆Ai over [θi, θi+1]:

We must compute the wedge area ∆Ai. Since ∆θ is tiny, the small curve segments are very
close to straight lines, and ∆Ai is a very thin triangle. Neglecting the small piece with
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radius larger that ri, the slice ∆Ai is approximately an isosceles triangle with height ri and
base ri∆θ.

∗ Thus:

∆Ai ≈ 1
2(base)×(height) ≈ 1

2(ri∆θ)ri = 1
2r

2
i ∆θ .

The total area is the sum of these pieces, which is clearly a Riemann sum for an integral:

A = lim
n→∞

n∑
i=1

∆Ai = lim
n→∞

n∑
i=1

1
2r

2
i ∆θ = lim

n→∞

n∑
i=1

1
2f(θi)

2∆θ =

∫ b

a

1
2f(θ)2 dθ .

That is, the area inside a polar graph r = f(θ) is given by an integral formula, but a
different integral from the area under a rectangular graph y = f(x).

Arclength in polar coordinates. Finally, we compute the length of the curve r = f(θ)
for θ ∈ [a, b]. The length L is a sum of n increments ∆Li:

Each increment ∆Li is approximately a straight line segment. Next to it is the radial
segment ∆r and the tiny circular arc with length ri ∆θ, which is also approximately a
straight line. We get an approximate right triangle with hypotentuse ∆Li and legs ri ∆θ
and ∆r, so the Pythagorean Theorem gives:

∆Li ≈
√

(ri∆θ)2 + (∆r)2 =

√
(ri∆θ)

2+(∆r)2

(∆θ)2
∆θ =

√
r2
i + (∆r

∆θ )2 ∆θ .

Therefore the total arclength is:

L = lim
n→∞

n∑
i=1

∆Li = lim
n→∞

n∑
i=1

√
r2
i + (∆r

∆θ )2 ∆θ

= lim
n→∞

n∑
i=1

√
f(θi)2 + (∆f(θi)

∆θ )2 ∆θ =

∫ b

a

√
f(θ)2 + f ′(θ)2 dθ .

We could also deduce this from our previous parametric arclength formula (§10.3) by ap-
plying it to (x(t), y(t)) = (f(t) cos(t), f(t) sin(t)).

∗On a circle of radius r, and arc of θ radians has length rθ: this is the definition of radian measure.



Example: Area of intersections. Consider the polar curve r = f(θ) = 1 − cos(θ). We
picture the abstract function f by its rectangular graph in θr parameter space (end §10.3):

The polar graph is a cardioid (heart-shape), which we draw along with the circle r = 1
2 .

prob: Find the area of the crescent-shaped region inside the cardioid & outside the circle.

We must first determine the intersection points of the two curves, where:

r = 1− cos(θ) = 1
2 =⇒ cos(θ) = 1

2 =⇒ θ = ±π
3 + 2nπ ,

where n is any integer. Since the whole cardioid is traced by θ ∈ [0, 2π], we can take all
intersection points in this range: θ = π

3 and θ = −π
3 + 2π = 5π

3 . Now we take the area
inside the cardioid r = f(θ) = 1− cos(θ), minus the area inside the circle r = g(θ) = 1

2 :

A =

∫ b

a

1
2f(θ)2 − 1

2g(θ)2 dθ =

∫ 5π/3

π/3

1
2(1− cos(θ))2 − 1

2(1
2)2 dθ

=
[

5
8θ − sin(θ) + 1

8 sin(2θ)
]θ=5π/3

θ=π/3
= 7

8

√
3 + 5π

6 ≈ 4.1 .

To do the integral, expand (1− cos(θ))2 and use cos2(θ) = 1
2 + 1

2 cos(2θ) (see §7.2).



Review example: Exponential spiral. Consider a snail-shell spiral curve which doubles
in radius with each turn:

This is the polar graph r = f(θ) = caθ = cebθ of a general exponential function (§6.4).
Assuming f(0) = 1, f(2π) = 2, allows us to solve for c = 1 and a = 21/2π = eln(2)/2π to get:

r = 2 θ/2π = ebθ for b = ln(2)
2π .

What is the length of this curve, from the point (r, θ) = (1, 0) all the way to the center,
that is, for θ ∈ (−∞, 0]? We have f ′(θ) = (ebθ)′ = bebθ, so the arclength formula gives:

L =

∫ 0

−∞

√
f(θ)2 + f ′(θ)2 dθ =

∫ 0

−∞

√
1+b2 ebθ dθ =

[
1
b

√
1+b2 ebθ

]θ=0

θ=−∞

= 1
b

√
1+b2 − lim

N→∞
1
b

√
1+b2 e−N =

√
1+ 4π2

ln2(2)
≈ 9.12 .

Or we could use geometry to show that these infinitely many turns have finite length. Let
L1 be the length of the first turn θ ∈ [−2π, 0], and L2 the length of the second turn, etc.
The exponential spiral is scale invariant: each turn inward is the 1

2 dilation of the previous
turn, with half the length, so the total is a geomteric series

∑∞
n=1 cr

n−1 = c
1−r (§11.2):

L = L1 + L2 + L3 + L4 + · · · = L1 +
1

2
L1 +

1

22
L1 +

1

23
L1 + · · · =

L1

(1− 1
2)

= 2L1.

Harmonic Spiral. From the above, we may say that the inward spiral r = 1/2θ has finite
arclength as θ → ∞ because the geometric series

∑∞
n=1

1
2n is convergent. Let us instead

model an inward spiral on the divergent harmonic series
∑ 1

n =∞, namely r = 1
θ for θ ≥ 1.

Then this should have infinite arclength:

L =
∫∞

1

√
(1
θ )2 + (− 1

θ2
)2 dθ =

∫∞
1

1
θ

√
1 + 1

θ2
dθ =

∫∞
1

√
1+θ2

θ2
dθ.

Since the integrand (in the second integral) is clearly positive and decreasing, the Integral
Test (§11.3) tells us that this diverges whenever the corresponding series diverges, namely :∑∞

n=1
1
n

√
1 + 1

n2 ≈
∑∞

n=1
1
n = ∞ (divergent).

This can be justified by the Direct Comparison Test (§11.4), since 1
n

√
1+ 1

n2 >
1
n ; or the

Limit Comparison Test: the ratio an
bn

=
√

1+ 1
n2 → 1, so they have the same divergence.



Alternatively, we can directly integrate, switching the variable to
∫ √

1+x2

x2
dx. Since we have√

1+x2 (§7.3), we try the trig substitution x = tan(t),
√

1+x2 = sec(t), dx = sec2(t) dt:∫ √
1 + x2

x2
dx =

∫
sec(t)

tan2(t)
sec2(t) dt =

∫
1

sin2(t) cos(t)
dt =

∫
1

sin2(t) cos2(t)
cos(t) dt.

As in §7.2, we do the substitution u = sin(t), 1−u2 = cos2(t), du = cos(t) dt:∫
1

sin2(t) cos2(t)
cos(t) dt =

∫
1

u2(1−u2)
du =

∫
A

u2
+
B

u
+

C

1+u
+

D

1−u
du.

Here the result is a rational function, expanded by partial fracitions (§7.4). Then:

1

u2(1−u2)
=

1−u2

u2(1−u2)
+

u2

u2(1−u2)
=

1

u2
+

1

(1−u)(1+u)
=

1

u2
+

C

1+u
+

D

1−u
.

We can find the remaining coefficients by clearing denominators to get

1 = C(1−u) +D(1+u).

Substituting u = 1 gives D = 1
2 , and u = −1 gives C = 1

2 . The integral becomes:∫
1

u2
+

1
2

1+u
+

1
2

1−u
du = −1

u
+ 1

2 ln(1+u)− 1
2 ln(1−u) = −1

u
+

1

2
ln

(
1+u

1−u

)
.

Now we need to restore the original variable x = tan(t) from u = sin(t). The standard
triangle for x = tan(t) implies u = sin(t) = x√

1+x2
. After simplification, the final answer is:

∫ √
1+x2

x2
dx = −

√
1+x2

x
+

1

2
ln

(√
1+x2 + x√
1+x2 − x

)
.

Therefore the total arclength is:

L =

∫ ∞
1

√
1+x2

x2
dx = lim

x→∞
1
2 ln

(√
1+x2 + x√
1+x2 − x

)
+K

for a constant K. In the fraction
√

1+x2+x√
1+x2−x , we cannot use L’Hopital’s Rule (§6.8), since the

numerator clearly approaches ∞, but the denominator does not. Substitute x = 1/z:

lim
x→∞

√
1+x2 − x = lim

z→0+

√
1+

1

z2
− 1

z
= lim

z→0+

√
z2+1− 1

z
.

This is a 0
0 limit, so we can apply L’Hopital to get:

lim
x→∞

√
1+x2 − x = lim

z→0+

(
√
z2+1− 1)′

(z)′
= lim

z→0+

z√
z2+1

1
= 0+.

After all that, we obtain the expected arclength:

L = 1
2 ln
(∞

0+

)
+K = 1

2 ln(∞) +K = ∞ .


