Math 133

Slope in polar coordinates. We have seen that round, turny shapes are more simply described by polar $r\theta$ -equations than by rectangular xy-equations. In this section, we use polar equations to compute geometric information.

Thus, we consider a polar curve $r = f(\theta)$ over $\theta \in [a, b]$. We split the interval $\theta \in [a, b]$ into a large number n of increments, each of length $\Delta \theta = \frac{b-a}{n}$, with sample points $\theta_1, \ldots, \theta_n$. Here is a typical increment of the curve over $\theta \in [\theta_i, \theta_{i+1}]$, showing the corresponding increments in the coordinates:

Our first problem is to find the slope of this curve at a given θ . It is *not* the derivative $f'(\theta) = \frac{dr}{d\theta}$, which is the rate of change of the radius with respect to the angle. Rather, slope is the rate of change of $y = r \sin(\theta) = f(\theta) \sin(\theta)$ with respect to $x = r \cos(\theta) = f(\theta) \cos(\theta)$. That is:

$$(\text{slope at }\theta) = \frac{dy}{dx} = -\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{(f(\theta)\sin(\theta))'}{(f(\theta)\cos(\theta))'} = \frac{f'(\theta)\sin(\theta) + f(\theta)\cos(\theta)}{f'(\theta)\cos(\theta) - f(\theta)\sin(\theta)}$$

Area in polar coordinates. Assume $r = f(\theta) \ge 0$ for $\theta \in [a, b]$ to avoid complications with signs, and consider the region inside the curve, defined by $0 \le r \le f(\theta)$ for $\theta \in [a, b]$. Apply Slice Analysis (§5.2), splitting the area A into n thin wedges ΔA_i over $[\theta_i, \theta_{i+1}]$:

We must compute the wedge area ΔA_i . Since $\Delta \theta$ is tiny, the small curve segments are very close to straight lines, and ΔA_i is a very thin triangle. Neglecting the small piece with

Notes by Peter Magyar magyar@math.msu.edu

radius larger that r_i , the slice ΔA_i is approximately an isosceles triangle with height r_i and base $r_i \Delta \theta$.* Thus:

$$\Delta A_i \approx \frac{1}{2} (\text{base}) \times (\text{height}) \approx \frac{1}{2} (r_i \Delta \theta) r_i = \frac{1}{2} r_i^2 \Delta \theta.$$

The total area is the sum of these pieces, which is clearly a Riemann sum for an integral:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta A_i = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2} r_i^2 \Delta \theta = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2} f(\theta_i)^2 \Delta \theta = \int_a^b \frac{1}{2} f(\theta)^2 d\theta.$$

That is, the area inside a polar graph $r = f(\theta)$ is given by an integral formula, but a different integral from the area under a rectangular graph y = f(x).

Arclength in polar coordinates. Finally, we compute the length of the curve $r = f(\theta)$ for $\theta \in [a, b]$. The length L is a sum of n increments ΔL_i :

Each increment ΔL_i is approximately a straight line segment. Next to it is the radial segment Δr and the tiny circular arc with length $r_i \Delta \theta$, which is also approximately a straight line. We get an approximate right triangle with hypotentuse ΔL_i and legs $r_i \Delta \theta$ and Δr , so the Pythagorean Theorem gives:

$$\Delta L_i \approx \sqrt{(r_i \Delta \theta)^2 + (\Delta r)^2} = \sqrt{\frac{(r_i \Delta \theta)^2 + (\Delta r)^2}{(\Delta \theta)^2}} \Delta \theta = \sqrt{r_i^2 + (\frac{\Delta r}{\Delta \theta})^2} \Delta \theta.$$

Therefore the total arclength is:

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta L_{i} = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{r_{i}^{2} + (\frac{\Delta r}{\Delta \theta})^{2}} \,\Delta\theta$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{f(\theta_{i})^{2} + (\frac{\Delta f(\theta_{i})}{\Delta \theta})^{2}} \,\Delta\theta = \int_{a}^{b} \sqrt{f(\theta)^{2} + f'(\theta)^{2}} \,d\theta$$

We could also deduce this from our previous parametric arclength formula (§10.3) by applying it to $(x(t), y(t)) = (f(t)\cos(t), f(t)\sin(t))$.

^{*}On a circle of radius r, and arc of θ radians has length $r\theta$: this is the definition of radian measure.

Example: Area of intersections. Consider the polar curve $r = f(\theta) = 1 - \cos(\theta)$. We picture the abstract function f by its rectangular graph in θr parameter space (end §10.3):

The polar graph is a cardioid (heart-shape), which we draw along with the circle $r = \frac{1}{2}$.

PROB: Find the area of the crescent-shaped region inside the cardioid & outside the circle. We must first determine the intersection points of the two curves, where:

$$r = 1 - \cos(\theta) = \frac{1}{2} \implies \cos(\theta) = \frac{1}{2} \implies \theta = \pm \frac{\pi}{3} + 2n\pi$$

where *n* is any integer. Since the whole cardioid is traced by $\theta \in [0, 2\pi]$, we can take all intersection points in this range: $\theta = \frac{\pi}{3}$ and $\theta = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3}$. Now we take the area inside the cardioid $r = f(\theta) = 1 - \cos(\theta)$, minus the area inside the circle $r = g(\theta) = \frac{1}{2}$:

$$A = \int_{a}^{b} \frac{1}{2} f(\theta)^{2} - \frac{1}{2} g(\theta)^{2} d\theta = \int_{\pi/3}^{5\pi/3} \frac{1}{2} (1 - \cos(\theta))^{2} - \frac{1}{2} (\frac{1}{2})^{2} d\theta$$
$$= \left[\frac{5}{8} \theta - \sin(\theta) + \frac{1}{8} \sin(2\theta) \right]_{\theta=\pi/3}^{\theta=5\pi/3} = \frac{7}{8} \sqrt{3} + \frac{5\pi}{6} \approx 4.1.$$

To do the integral, expand $(1 - \cos(\theta))^2$ and use $\cos^2(\theta) = \frac{1}{2} + \frac{1}{2}\cos(2\theta)$ (see §7.2).

PROB: Find the highest point of the cardioid: $y(t) = (1 - \cos(t))\sin(t) = \max$. From §3.1, we need to solve y'(t) = 0. Using the Product Rule and $\sin^2 = 1 - \cos^2$ we get: $y'(t) = \sin(t)\sin(t) + (1 - \cos(t))\cos(t) = -2\cos^2(t) + \cos(t) + 1 = 0$, and the Quadratic formula gives $\cos(t) = -\frac{1}{2}$, $t = \pm \frac{2\pi}{3}$. The maximum is $y(\frac{2\pi}{3}) = \frac{3\sqrt{3}}{4}$.

Review example: Exponential spiral. Consider a snail-shell spiral curve which doubles in radius with each turn:

This is the polar graph $r = f(\theta) = ca^{\theta} = ce^{b\theta}$ of a general exponential function (§6.4). Assuming f(0) = 1, $f(2\pi) = 2$, allows us to solve for c = 1 and $a = 2^{1/2\pi} = e^{\ln(2)/2\pi}$ to get:

$$r = 2^{\theta/2\pi} = e^{b\theta}$$
 for $b = \frac{\ln(2)}{2\pi}$

What is the length of this curve, from the point $(r, \theta) = (1, 0)$ all the way to the center, that is, for $\theta \in (-\infty, 0]$? We have $f'(\theta) = (e^{b\theta})' = be^{b\theta}$, so the arclength formula gives:

$$\begin{split} L &= \int_{-\infty}^{0} \sqrt{f(\theta)^{2} + f'(\theta)^{2}} \, d\theta \ = \ \int_{-\infty}^{0} \sqrt{1 + b^{2}} \, e^{b\theta} \, d\theta \ = \ \left[\frac{1}{b} \sqrt{1 + b^{2}} \, e^{b\theta} \right]_{\theta = -\infty}^{\theta = 0} \\ &= \ \frac{1}{b} \sqrt{1 + b^{2}} \ - \ \lim_{N \to \infty} \frac{1}{b} \sqrt{1 + b^{2}} \, e^{-N} \ = \ \sqrt{1 + \frac{4\pi^{2}}{\ln^{2}(2)}} \ \approx \ 9.12 \, . \end{split}$$

Or we could use geometry to show that these infinitely many turns have finite length. Let L_1 be the length of the first turn $\theta \in [-2\pi, 0]$, and L_2 the length of the second turn, etc. The exponential spiral is *scale invariant*: each turn inward is the $\frac{1}{2}$ dilation of the previous turn, with half the length, so the total is a geometric series $\sum_{n=1}^{\infty} cr^{n-1} = \frac{c}{1-r}$ (§11.2):

$$L = L_1 + L_2 + L_3 + L_4 + \dots = L_1 + \frac{1}{2}L_1 + \frac{1}{2^2}L_1 + \frac{1}{2^3}L_1 + \dots = \frac{L_1}{(1 - \frac{1}{2})} = 2L_1.$$

Harmonic Spiral. From the above, we may say that the inward spiral $r = 1/2^{\theta}$ has finite arclength as $\theta \to \infty$ because the geometric series $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is convergent. Let us instead model an inward spiral on the divergent harmonic series $\sum \frac{1}{n} = \infty$, namely $r = \frac{1}{\theta}$ for $\theta \ge 1$. Then this should have infinite arclength:

$$L = \int_1^\infty \sqrt{(\frac{1}{\theta})^2 + (-\frac{1}{\theta^2})^2} \, d\theta = \int_1^\infty \frac{1}{\theta} \sqrt{1 + \frac{1}{\theta^2}} \, d\theta = \int_1^\infty \frac{\sqrt{1 + \theta^2}}{\theta^2} \, d\theta.$$

Since the integrand (in the second integral) is clearly positive and decreasing, the Integral Test (§11.3) tells us that this diverges whenever the corresponding series diverges, namely :

$$\sum_{n=1}^{\infty} \frac{1}{n} \sqrt{1 + \frac{1}{n^2}} \approx \sum_{n=1}^{\infty} \frac{1}{n} = \infty \text{ (divergent)}.$$

This can be justified by the Direct Comparison Test (§11.4), since $\frac{1}{n}\sqrt{1+\frac{1}{n^2}} > \frac{1}{n}$; or the Limit Comparison Test: the ratio $\frac{a_n}{b_n} = \sqrt{1+\frac{1}{n^2}} \to 1$, so they have the same divergence.

Alternatively, we can directly integrate, switching the variable to $\int \frac{\sqrt{1+x^2}}{x^2} dx$. Since we have $\sqrt{1+x^2}$ (§7.3), we try the trig substitution $x = \tan(t)$, $\sqrt{1+x^2} = \sec(t)$, $dx = \sec^2(t) dt$:

$$\int \frac{\sqrt{1+x^2}}{x^2} dx = \int \frac{\sec(t)}{\tan^2(t)} \sec^2(t) dt = \int \frac{1}{\sin^2(t)\cos(t)} dt = \int \frac{1}{\sin^2(t)\cos^2(t)} \cos(t) dt.$$

As in §7.2, we do the substitution $u = \sin(t)$, $1-u^2 = \cos^2(t)$, $du = \cos(t) dt$:

$$\int \frac{1}{\sin^2(t)\cos^2(t)}\cos(t)\,dt = \int \frac{1}{u^2(1-u^2)}\,du = \int \frac{A}{u^2} + \frac{B}{u} + \frac{C}{1+u} + \frac{D}{1-u}\,du.$$

Here the result is a rational function, expanded by partial fractions (§7.4). Then:

$$\frac{1}{u^2(1-u^2)} = \frac{1-u^2}{u^2(1-u^2)} + \frac{u^2}{u^2(1-u^2)} = \frac{1}{u^2} + \frac{1}{(1-u)(1+u)} = \frac{1}{u^2} + \frac{C}{1+u} + \frac{D}{1-u}$$

We can find the remaining coefficients by clearing denominators to get

$$1 = C(1 - u) + D(1 + u)$$

Substituting u = 1 gives $D = \frac{1}{2}$, and u = -1 gives $C = \frac{1}{2}$. The integral becomes:

$$\int \frac{1}{u^2} + \frac{\frac{1}{2}}{1+u} + \frac{\frac{1}{2}}{1-u} \, du = -\frac{1}{u} + \frac{1}{2}\ln(1+u) - \frac{1}{2}\ln(1-u) = -\frac{1}{u} + \frac{1}{2}\ln\left(\frac{1+u}{1-u}\right)$$

Now we need to restore the original variable $x = \tan(t)$ from $u = \sin(t)$. The standard triangle for $x = \tan(t)$ implies $u = \sin(t) = \frac{x}{\sqrt{1+x^2}}$. After simplification, the final answer is:

$$\int \frac{\sqrt{1+x^2}}{x^2} \, dx = -\frac{\sqrt{1+x^2}}{x} + \frac{1}{2} \ln \left(\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x} \right).$$

Therefore the total arclength is:

$$L = \int_{1}^{\infty} \frac{\sqrt{1+x^2}}{x^2} \, dx = \lim_{x \to \infty} \frac{1}{2} \ln \left(\frac{\sqrt{1+x^2} + x}{\sqrt{1+x^2} - x} \right) + K$$

for a constant K. In the fraction $\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x}$, we cannot use L'Hopital's Rule (§6.8), since the numerator clearly approaches ∞ , but the denominator does not. Substitute x = 1/z:

$$\lim_{x \to \infty} \sqrt{1 + x^2} - x = \lim_{z \to 0^+} \sqrt{1 + \frac{1}{z^2}} - \frac{1}{z} = \lim_{z \to 0^+} \frac{\sqrt{z^2 + 1} - 1}{z}$$

This is a $\frac{0}{0}$ limit, so we *can* apply L'Hopital to get:

$$\lim_{x \to \infty} \sqrt{1 + x^2} - x = \lim_{z \to 0^+} \frac{(\sqrt{z^2 + 1} - 1)'}{(z)'} = \lim_{z \to 0^+} \frac{\frac{z}{\sqrt{z^2 + 1}}}{1} = 0^+.$$

After all that, we obtain the expected arclength:

$$L = \frac{1}{2} \ln\left(\frac{\infty}{0^+}\right) + K = \frac{1}{2} \ln(\infty) + K = \infty.$$