Real functions and sequences. So far, our main objects of study have been functions $f: \mathbb{R} \rightarrow \mathbb{R}$, where the inputs and outputs are in the set of real numbers $\mathbb{R}=(-\infty, \infty)$. In this chapter, we introduce a new type of function called a sequence:

$$
a:\{1,2,3, \ldots\} \rightarrow \mathbb{R},
$$

in which the inputs are whole numbers $n=1,2,3, \ldots$, and the outputs are again real numbers, usually written as a_{n} instead of $a(n)$. The index n can be replaced arbitrarily: a_{i} for $i=1,2,3, \ldots$ is the same sequence as a_{n}. Some sequences may begin with a_{0}.

We can write a sequence either as a formula or as a list of outputs; for example:

$$
a_{n}=\frac{1}{n} \quad \Longleftrightarrow \quad\left\{a_{n}\right\}_{n=1}^{\infty}=1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots
$$

Here $\left\{a_{n}\right\}_{n=1}^{\infty}$ denotes the entire sequence, thought of as an infinite list, and we write the first few values $a_{1}=1, a_{2}=\frac{1}{2}, a_{3}=\frac{1}{3}$, with dot-dot-dot (\ldots) meaning "continue this pattern". We can picture this by plotting the points (n, a_{n}) in the plane, sometimes with a bar-graph as at left; or by marking only the output values $a_{1}, a_{2}, a_{3}, \ldots$ on a number line as at right:

EXAMPLES:

- $\left\{a_{n}\right\}=1,-1,1,-1, \ldots \Longleftrightarrow a_{n}=\left\{\begin{array}{rl}1 & \text { for } n \text { odd } \\ -1 & \text { for } n \text { even }\end{array} \Longleftrightarrow a_{n}=(-1)^{n-1}\right.$
- $a_{n}=\sin \left(\frac{n \pi}{2}\right) \Longleftrightarrow a_{n}=\left\{\begin{aligned} 0 & \text { for } n \text { even } \\ 1 & \text { for } n=4 k+1 \text { with integer } k \\ -1 & \text { for } n=4 k+3 \text { with integer } k\end{aligned}\right.$

$$
\Longleftrightarrow \quad \begin{array}{|c||c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \cdots \\
\hline \hline a_{n} & 1 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & \cdots \\
\hline
\end{array}
$$

- $a_{n}=2^{n} \Longleftrightarrow\left\{a_{n}\right\}=2,4,8,16, \ldots \quad \Longleftrightarrow \quad a_{1}=2, a_{n}=2 a_{n-1}$ for $n \geq 2$

The last definition is recursive, meaning that each value a_{n} is defined in terms of the previous value a_{n-1}, starting with an initial value $a_{1}=2$,

- The Fibonacci sequence is the most famous recursive sequence: each entry is the sum of the previous two.

$$
\begin{aligned}
& F_{1}=F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2} \text { for } n \geq 3 . \\
& \begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \cdots \\
\hline \hline F_{n} & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & \cdots \\
\hline
\end{array}
\end{aligned}
$$

There is no obvious formula for F_{n} in terms of n, but look up Binet's formula.
Convergence. It would be meaningless to take the limit of a sequence a_{n} as $n \rightarrow c$, since a whole number n cannot gradually approach a finite value c. However, we can take the limit as $n \rightarrow \infty$.

Definition: We say the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to the number L, denoted $\lim _{n \rightarrow \infty} a_{n}=L$, whenever a_{n} gets as close as desired to L, provided n is large enough. Specifically, for any error tolerance $\epsilon>0$, there is some lower bound N such that $n>N$ forces $L-\epsilon<a_{n}<L+\epsilon$; or equivalently:

$$
n>N \quad \Longrightarrow \quad\left|a_{n}-L\right|<\epsilon .
$$

If the limit does not exist, we say the sequence diverges.
This just repeats the error-control definition for $\lim _{x \rightarrow \infty} f(x)=L$ from §1.7, and we have a similar definition for divergence to infinity, $\lim _{n \rightarrow \infty} a_{n}=\infty$ or $-\infty$. In the pictures above, we can see the convergence of $a_{n}=\frac{1}{n}$ to $L=0$: in the graph, we see the points $\left(n, a_{n}\right)$ approach the horizontal asymptote $y=L$; on the number line, we see the a_{n} points march right up to the limit value L.
EXAMPLE: Prove that: $\lim _{n \rightarrow \infty} 2+\frac{(-1)^{n}}{2 n}=2$. Given the acceptable error tolerance $\epsilon>0$, we work backward from the desired inequality:
$2-\epsilon<2+\frac{(-1)^{n}}{2 n}<2+\epsilon \Longleftrightarrow-\epsilon<\frac{(-1)^{n}}{2 n}<\epsilon \Longleftrightarrow\left|\frac{(-1)^{n}}{2 n}\right|<\epsilon \Longleftrightarrow n>\frac{1}{2 \epsilon}$
For example, if we want $\left|a_{n}-2\right|<\epsilon=\frac{1}{100}$, we take $n>\frac{1}{2 \epsilon}=\frac{1}{2 / 100}=50$.
Limit Laws. We do not usually perform error-control analysis to work with limits of sequences a_{n}, but rather rely on our previous knowledge of limits of functions $f(x)$:

Sequence Comparison Theorem: If $f(x)$ is a function with $a_{n}=f(n)$ for all n, then $\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)$, when the right-hand limit exists or is $\pm \infty$.
EXAMPLE: Compute $\lim _{n \rightarrow \infty} \frac{n^{2}+n}{2 n^{2}-3}$. Here $a_{n}=\frac{n^{2}+n}{2 n^{2}-3}$ for $n=1,2,3, \ldots$ is the sequence version of $f(x)=\frac{x^{2}+x}{2 x^{2}-3}$ for real numbers x, and we have techniques to deal with limits of $f(x)$. Here, we can use L'Hôpital's Rule:

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+n}{2 n^{2}-3}=\lim _{x \rightarrow \infty} \frac{x^{2}+x}{2 x^{2}-3} \stackrel{\text { Hop }}{=} \lim _{x \rightarrow \infty} \frac{2 x+1}{4 x} \stackrel{\text { Hop }}{=} \lim _{x \rightarrow \infty} \frac{2}{4}=\frac{1}{2} .
$$

We cannot use L'Hôpital's Rule directly on a_{n} because we cannot take the derivative of a sequence: it is not a curve with a slope at each point.

An alternative way of handling limits of sequences is to repeat the kind of analysis we did with functions: combine Basic Limits using Limit Laws (§1.6). We have:

- Basic Limits: $\lim _{n \rightarrow \infty} c=c$ and $\lim _{n \rightarrow \infty} n=\infty$.
- Sum Law: $\lim _{n \rightarrow \infty} a_{n}+b_{n}=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$.
- Product Law: $\lim _{n \rightarrow \infty} a_{n} b_{n}=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}$.
- Quotient Law: $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$.

The above Laws are valid provided the right-side expressions make sense: for example, in the Quotient Law we must assume that a_{n} and b_{n} converge, and $\lim _{n \rightarrow \infty} b_{n} \neq 0$. Furthermore, the Laws are valid when the right-side limits are infinite, provided we use the Infinity Rules:
$\infty+\infty=\infty \quad \infty \cdot \infty=\infty \quad c \cdot \infty=\left\{\begin{array}{rl}\infty & \text { if } c>0 \\ -\infty & \text { if } c<0\end{array} \quad \frac{1}{ \pm \infty}=0\right.$.
example: We can re-do the sequence in the previous example as follows:

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+n}{2 n^{2}-3}=\lim _{n \rightarrow \infty} \frac{n^{2}+n}{2 n^{2}-3} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{2-\frac{3}{n^{2}}}
$$

Applying the Limit Laws and Infinity Rules, this becomes:

$$
\frac{1+\lim _{n \rightarrow \infty} \frac{1}{n}}{2-3\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)^{2}}=\frac{1+\frac{1}{\infty}}{2-3\left(\frac{1}{\infty}\right)^{2}}=\frac{1+0}{2-3\left(0^{2}\right)}=\frac{1}{2}
$$

Limit Theorems. We have two more results which parallel those for limits of $f(x)$:
Squeeze Theorem: If $a_{n} \leq b_{n} \leq c_{n}$ for all n, and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

EXAMPLE: Rigorously evaluate the limit of $b_{n}=\frac{2+\sin \left(n^{2}\right)}{n}$. Note that the sequence $q_{n}=\sin \left(n^{2}\right)$ diverges, oscillating unpredictably between $-1 \leq \sin \left(n^{2}\right) \leq 1$. However, we have bounds:

$$
a_{n}=\frac{1}{n}=\frac{2-1}{n} \leq \frac{2+\sin \left(n^{2}\right)}{n} \leq \frac{2+1}{n}=\frac{3}{n}=c_{n} .
$$

Since the upper and lower bounds both approach the limit $L=0$, so does the middle sequence: $\lim _{n \rightarrow \infty} \frac{2+\sin \left(n^{2}\right)}{n}=0$.

Continuity Theorem: If $g(x)$ is continuous, i.e. $\lim _{x \rightarrow c} g(x)=g(c)$ for all c, then:

$$
\lim _{n \rightarrow \infty} g\left(a_{n}\right)=g\left(\lim _{n \rightarrow \infty} a_{n}\right)
$$

EXAMPLE: Find $\lim _{n \rightarrow \infty} n^{1 / n}$: that is, does the sequence $1, \sqrt{2}, \sqrt[3]{3}, \sqrt[4]{4}, \ldots$ approach a finite value? As always with exponentiation, we rewrite in terms of the natural exponential $\exp (x)=e^{x}$, which is a continuous function:

$$
\lim _{n \rightarrow \infty} n^{1 / n}=\lim _{n \rightarrow \infty} e^{\ln (n) / n}=\lim _{n \rightarrow \infty} \exp \left(\frac{\ln (n)}{n}\right)=\exp \left(\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}\right)
$$

Now we can evaluate the inside limit by L'Hôpital:

$$
\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0
$$

Hence $\lim _{n \rightarrow \infty} n^{1 / n}=e^{0}=1$. Check this by computing values of $n^{1 / n}$ on your calculator.
Continuous compounding. Here is a surprising example from financial theory. Suppose a bank account pays an annual interest rate of r : for example, $r=0.04=4 \%$ means that after a year, each dollar becomes $1+r=1.04$ dollars.

Now suppose half the interest is paid after half a year, giving $1+\frac{r}{2}$ dollars, and in the second half-year, the previous interest also earns interest (i.e. compound interest). At the end of the year, each dollar becomes $\left(1+\frac{r}{2}\right)\left(1+\frac{r}{2}\right)=\left(1+\frac{r}{2}\right)^{2}$ dollars. If the interest is paid three times a year, compound interest gives $\left(1+\frac{r}{3}\right)^{3}$ dollars; and if interest is paid n times a year, it gives $\left(1+\frac{r}{n}\right)^{n}$ dollars.

Now imagine if interest were paid every hour, or every second, etc., approaching a system of compounding continuously at every instant. Would this produce an unbounded amount of money, or tend to a limit? Let's see!

$$
\left(1+\frac{r}{n}\right)^{n}=\exp \left(\ln \left(1+\frac{r}{n}\right) n\right)
$$

Now L'Hôpital gives:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \ln \left(1+\frac{r}{x}\right) x & =\lim _{x \rightarrow \infty} \frac{\ln \left(1+r x^{-1}\right)}{x^{-1}} \stackrel{\text { Hop }}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{1+r x^{-1}}\left(-r x^{-2}\right)}{-x^{-2}} \\
& =\lim _{x \rightarrow \infty} \frac{r x}{x+r} \stackrel{\text { Hop }}{=} \lim _{x \rightarrow \infty} \frac{r}{1}=r .
\end{aligned}
$$

Therefore:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=\exp (r)=e^{r}
$$

Thus, an interest rate of r produces an annual yield of e^{r} under continuous compounding. No intervals of compounding will produce more than this. Once again, the natural exponential intrudes even though the original question had nothing to do with it.

