Math 133

Sequences

Real functions and sequences. So far, our main objects of study have been functions $f : \mathbb{R} \to \mathbb{R}$, where the inputs and outputs are in the set of real numbers $\mathbb{R} = (-\infty, \infty)$. In this chapter, we introduce a new type of function called a *sequence*:

$$a: \{1, 2, 3, \ldots\} \rightarrow \mathbb{R},\$$

in which the inputs are whole numbers $n = 1, 2, 3, \ldots$, and the outputs are again real numbers, usually written as a_n instead of a(n). The index n can be replaced arbitrarily: a_i for $i = 1, 2, 3, \ldots$ is the same sequence as a_n . Some sequences may begin with a_0 .

We can write a sequence either as a formula or as a list of outputs; for example:

$$a_n = \frac{1}{n} \iff \{a_n\}_{n=1}^{\infty} = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Here $\{a_n\}_{n=1}^{\infty}$ denotes the entire sequence, thought of as an infinite list, and we write the first few values $a_1 = 1$, $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3}$, with dot-dot-dot (...) meaning "continue this pattern". We can picture this by plotting the points (n, a_n) in the plane, sometimes with a bar-graph as at left; or by marking only the output values a_1, a_2, a_3, \ldots on a number line as at right:

The last definition is *recursive*, meaning that each value a_n is defined in terms of the previous value a_{n-1} , starting with an initial value $a_1 = 2$,

Notes by Peter Magyar magyar@math.msu.edu

• The *Fibonacci sequence* is the most famous recursive sequence: each entry is the sum of the previous two.

$F_1 = F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$.											
	n	1	2	3	4	5	6	7	8		
	F_n	1	1	2	3	5	8	13	21		

There is no obvious formula for F_n in terms of n, but look up *Binet's formula*.

Convergence. It would be meaningless to take the limit of a sequence a_n as $n \to c$, since a whole number n cannot gradually approach a finite value c. However, we can take the limit as $n \to \infty$.

Definition: We say the sequence $\{a_n\}_{n=1}^{\infty}$ converges to the number L, denoted $\lim_{n\to\infty} a_n = L$, whenever a_n gets as close as desired to L, provided n is large enough. Specifically, for any error tolerance $\epsilon > 0$, there is some lower bound N such that n > N forces $L - \epsilon < a_n < L + \epsilon$; or equivalently:

$$n > N \implies |a_n - L| < \epsilon$$
.

If the limit does not exist, we say the sequence *diverges*.

This just repeats the error-control definition for $\lim_{x\to\infty} f(x) = L$ from §1.7, and we have a similar definition for divergence to infinity, $\lim_{n\to\infty} a_n = \infty$ or $-\infty$. In the pictures above, we can see the convergence of $a_n = \frac{1}{n}$ to L = 0: in the graph, we see the points (n, a_n) approach the horizontal asymptote y = L; on the number line, we see the a_n points march right up to the limit value L.

EXAMPLE: Prove that: $\lim_{n\to\infty} 2 + \frac{(-1)^n}{2n} = 2$. Given the acceptable error tolerance $\epsilon > 0$, we work backward from the desired inequality:

$$2-\epsilon < 2+\frac{(-1)^n}{2n} < 2+\epsilon \quad \Longleftrightarrow \quad -\epsilon < \frac{(-1)^n}{2n} < \epsilon \quad \Longleftrightarrow \quad \left|\frac{(-1)^n}{2n}\right| < \epsilon \quad \Longleftrightarrow \quad n > \frac{1}{2\epsilon}$$

For example, if we want $|a_n - 2| < \epsilon = \frac{1}{100}$, we take $n > \frac{1}{2\epsilon} = \frac{1}{2/100} = 50$.

Limit Laws. We do not usually perform error-control analysis to work with limits of sequences a_n , but rather rely on our previous knowledge of limits of functions f(x):

Sequence Comparison Theorem: If f(x) is a function with $a_n = f(n)$ for all n, then $\lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x)$, when the right-hand limit exists or is $\pm \infty$.

EXAMPLE: Compute $\lim_{n\to\infty} \frac{n^2+n}{2n^2-3}$. Here $a_n = \frac{n^2+n}{2n^2-3}$ for n = 1, 2, 3, ... is the sequence version of $f(x) = \frac{x^2+x}{2x^2-3}$ for real numbers x, and we have techniques to deal with limits of f(x). Here, we can use L'Hôpital's Rule:

$$\lim_{n \to \infty} \frac{n^2 + n}{2n^2 - 3} = \lim_{x \to \infty} \frac{x^2 + x}{2x^2 - 3} \stackrel{\text{Hop}}{=} \lim_{x \to \infty} \frac{2x + 1}{4x} \stackrel{\text{Hop}}{=} \lim_{x \to \infty} \frac{2}{4} = \frac{1}{2}.$$

We cannot use L'Hôpital's Rule directly on a_n because we cannot take the derivative of a sequence: it is not a curve with a slope at each point.

An alternative way of handling limits of sequences is to repeat the kind of analysis we did with functions: combine Basic Limits using Limit Laws (§1.6). We have:

- Basic Limits: $\lim_{n \to \infty} c = c$ and $\lim_{n \to \infty} n = \infty$.
- Sum Law: $\lim_{n \to \infty} a_n + b_n = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$.
- Product Law: $\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$.

• Quotient Law:
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

The above Laws are valid provided the right-side expressions make sense: for example, in the Quotient Law we must assume that a_n and b_n converge, and $\lim_{n\to\infty} b_n \neq 0$. Furthermore, the Laws are valid when the right-side limits are infinite, provided we use the Infinity Rules:

$$\infty + \infty = \infty$$
 $\infty \cdot \infty = \infty$ $c \cdot \infty = \begin{cases} \infty & \text{if } c > 0 \\ -\infty & \text{if } c < 0 \end{cases}$ $\frac{1}{\pm \infty} = 0.$

EXAMPLE: We can re-do the sequence in the previous example as follows:

$$\lim_{n \to \infty} \frac{n^2 + n}{2n^2 - 3} = \lim_{n \to \infty} \frac{n^2 + n}{2n^2 - 3} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2 - \frac{3}{n^2}}$$

Applying the Limit Laws and Infinity Rules, this becomes:

$$\frac{1+\lim_{n\to\infty}\frac{1}{n}}{2-3\left(\lim_{n\to\infty}\frac{1}{n}\right)^2} = \frac{1+\frac{1}{\infty}}{2-3\left(\frac{1}{\infty}\right)^2} = \frac{1+0}{2-3(0^2)} = \frac{1}{2}$$

Limit Theorems. We have two more results which parallel those for limits of f(x):

Squeeze Theorem: If $a_n \leq b_n \leq c_n$ for all n, and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

EXAMPLE: Rigorously evaluate the limit of $b_n = \frac{2+\sin(n^2)}{n}$. Note that the sequence $q_n = \sin(n^2)$ diverges, oscillating unpredictably between $-1 \leq \sin(n^2) \leq 1$. However, we have bounds:

$$a_n = \frac{1}{n} = \frac{2-1}{n} \le \frac{2+\sin(n^2)}{n} \le \frac{2+1}{n} = \frac{3}{n} = c_n$$

Since the upper and lower bounds both approach the limit L = 0, so does the middle sequence: $\lim_{n \to \infty} \frac{2 + \sin(n^2)}{n} = 0.$

Continuity Theorem: If g(x) is continuous, i.e. $\lim_{x \to c} g(x) = g(c)$ for all c, then:

$$\lim_{n \to \infty} g(a_n) = g\left(\lim_{n \to \infty} a_n\right).$$

EXAMPLE: Find $\lim_{n\to\infty} n^{1/n}$: that is, does the sequence $1, \sqrt{2}, \sqrt[3]{3}, \sqrt[4]{4}, \ldots$ approach a finite value? As always with exponentiation, we rewrite in terms of the natural exponential $\exp(x) = e^x$, which is a continuous function:

$$\lim_{n \to \infty} n^{1/n} = \lim_{n \to \infty} e^{\ln(n)/n} = \lim_{n \to \infty} \exp\left(\frac{\ln(n)}{n}\right) = \exp\left(\lim_{n \to \infty} \frac{\ln(n)}{n}\right).$$

Now we can evaluate the inside limit by L'Hôpital:

$$\lim_{n \to \infty} \frac{\ln(n)}{n} = \lim_{x \to \infty} \frac{\ln(x)}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0.$$

Hence $\lim_{n\to\infty} n^{1/n} = e^0 = 1$. Check this by computing values of $n^{1/n}$ on your calculator.

Continuous compounding. Here is a surprising example from financial theory. Suppose a bank account pays an annual interest rate of r: for example, r = 0.04 = 4% means that after a year, each dollar becomes 1 + r = 1.04 dollars.

Now suppose half the interest is paid after half a year, giving $1 + \frac{r}{2}$ dollars, and in the second half-year, the previous interest also earns interest (i.e. compound interest). At the end of the year, each dollar becomes $(1 + \frac{r}{2})(1 + \frac{r}{2}) = (1 + \frac{r}{2})^2$ dollars. If the interest is paid three times a year, compound interest gives $(1 + \frac{r}{3})^3$ dollars; and if interest is paid n times a year, it gives $(1 + \frac{r}{n})^n$ dollars.

Now imagine if interest were paid every hour, or every second, etc., approaching a system of compounding continuously at every instant. Would this produce an unbounded amount of money, or tend to a limit? Let's see!

$$\left(1+\frac{r}{n}\right)^n = \exp\left(\ln\left(1+\frac{r}{n}\right)n\right)$$

Now L'Hôpital gives:

$$\lim_{x \to \infty} \ln\left(1 + \frac{r}{x}\right) x = \lim_{x \to \infty} \frac{\ln\left(1 + rx^{-1}\right)}{x^{-1}} \stackrel{\text{Hop}}{=} \lim_{x \to \infty} \frac{\frac{1}{1 + rx^{-1}} \left(-rx^{-2}\right)}{-x^{-2}}$$
$$= \lim_{x \to \infty} \frac{rx}{x + r} \stackrel{\text{Hop}}{=} \lim_{x \to \infty} \frac{r}{1} = r.$$

Therefore:

$$\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n = \exp(r) = e^r.$$

Thus, an interest rate of r produces an annual yield of e^r under continuous compounding. No intervals of compounding will produce more than this. Once again, the natural exponential intrudes even though the original question had nothing to do with it.