
Math 133 Integral Test Stewart §11.3

Series and integrals. Our goal for infinite series is to express complicated
quantities as infinite series of simple terms, so that finite partial sums approximate
the original quantity as accurately as we like. We will not have significant tools
to achieve this until §11.9.

For now (11.3-7), we concentrate on a more elementary question: when does
a given series converge to some finite value? For example, we have seen the nth
Term Vanishing Test: the series must diverge if the the terms do not approach
zero, limn→∞ an 6= 0. A more subtle and powerful convergence test comes from
comparing the sum of a series to the area under a curve y = f(x) passing through
each point (n, an).

Integral Test: Suppose the function f(x) is continuous, positive, and
decreasing on the interval x ∈ [1,∞), and that an = f(n). We compare
the improper integral

∫∞
1 f(x) dx with the infinite series

∑∞
n=1 an.

• If
∫∞
1 f(x) dx diverges, then

∑∞
n=1 an also diverges.

• If
∫∞
1 f(x) dx converges, then

∑∞
n=1 an also converges.

Divergent case. Consider
∑∞

n=1 an =
∑∞

n=1
1
n . Then the function f(x) = 1

x has
an = f(n), and for x ∈ [1,∞), this function is:

• continuous, since its only vertical asymptote is x = 0, outside x ∈ [1,∞) ;

• positive, since x ≥ 1 implies 1
x > 0 ;

• decreasing, since its derivative is negative,∗ f ′(x) = − 1
x2 < 0.

Thus, we can apply the Integral Test to compare the infinite series with the im-
proper integral

∫ x
1 f(x) dx. We compute:∫∞

1
1
x dx = lim

n→∞

∫ n
1

1
x dx = lim

n→∞
ln(x)

∣∣∣x=n

x=1
= lim

n→∞
ln(n)− ln(1) = ∞.

Since the integral diverges, the series
∑∞

n=1 an must also diverge.
The Integral Test is best understood geometrically. The value of the series is

the total area under the bar-graph of {an}, where we draw the bar at height an
above the interval x ∈ [n, n+1].
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The integral is the area of the region under y = f(x) and above x ∈ [1,∞). But
the bar graph completely contains the integral region, so:

∞∑
n=1

an ≥
∫ ∞
1

f(x) dx .

Since the integral diverges to infinity, getting larger and larger with no bound as
we add area on the right, the series must also diverge as we add more terms.

Convergent case. Now consider
∑∞

n=1 an =
∑∞

n=1
1
n2 which has an = f(n) for

f(x) = 1
x2 , which is again a continuous, positive, decreasing function for x ∈ [1,∞).

Thus we can apply the Integral Test to compare the infinte series with the improper
integral

∫ x
1 f(x) dx:∫∞

1
1
x2 dx = lim

n→∞

∫ n
1

1
x2 dx = lim

n→∞
− 1

x

∣∣∣x=n

x=1
= lim

n→∞
− 1

n − (−1
1) = 1.

Since the integral converges, the series
∑∞

n=1 an must also converge.
Again, we can understand this geometrically. The value of the series is the

total area under the bar-graph of {an}, but this time we draw the bar at height
an above the interval x ∈ [n−1, n], shifted left from our previous method. Notice
that the heights of the bars are an = 1

n2 , much lower than the previous example
with an = 1

n , so this area has a better chance of converging to a finite value.

Clearly, the part of the bar-graph after a2 is contained in the integral region under



y = f(x) and above x ∈ [1,∞). Thus:

∞∑
n=2

an ≤
∫ ∞
1

f(x) dx ,

∞∑
n=1

an = a1 +

∞∑
n=2

an ≤ a1 +

∫ ∞
1

f(x) dx = 2 .

We conclude not only that
∑∞

n=1
1
n2 is finite, but that it is at most 2.†

Examples.

• Standard p-series. The above reasoning is easily generalized to show:

∞∑
n=1

1

np
converges if p > 1, diverges if p ≤ 1.

• Determine the convergence of:

∞∑
n=1

an =
∞∑
n=1

1

(2n− 5)(2n− 7)
.

In this case, the function f(x) = 1
(2x−5)(2x−7) has vertical asymptotes at

x = 5
2 ,

7
2 : it is not continuous, or positive, or decreasing on x ∈ [1,∞), so

the Integral Test does not immediately apply.

However, to the right of the asympotes, for x ∈ [4,∞), the function is
continuous; it is positive, since 2x − 5 > 0 and 2x − 7 > 0 for x ≥ 4; and
it is decreasing, since the derivative f ′(x) = − 8(x−3)

(5−2x)2(7−2x)2 < 0 for x ≥ 4.

Further, we have:∫∞
4

1
(2x−5)(2x−7) dx =

∫∞
4 −

1
2

2x−5 +
1
2

2x−7 dx

= limn→∞
1
4 ln
(
2x−7
2x−5

)∣∣∣n
x=4

= 0− ln(13) < ∞.

since limn→∞ ln
(
2n−7
2n−5

)
= ln(1) = 0.

Slightly generalizing the reasoning of the convergent case of the Integral Test

above, we find that
∞∑
n=5

an ≤
∫∞
4 f(x) dx. Thus, we have:

∞∑
n=1

an = a1 + a2 + a3 + a4 +
∞∑
n=5

an

< a1 + a2 + a3 + a4 +
∫∞
4 f(x) dx < ∞.

†In fact, Euler computed this limit as π2

6
≈ 1.64. Look up the Basel Problem.


