
Math 133 Comparison Tests Stewart §11.4

Convergence and divergence. We continue to discuss convergence tests: ways
to tell if a given series

∑∞
n=1 an = limN→∞

∑N
n=1 an converges (to a finite value), or

diverges (to infinity or by oscillating).∗ So far, we know convergence for two kinds of
standard series:

• Geometric series:
∑∞

n=1 cr
n−1 converges to c

1−r if |r| < 1, diverges if |r| ≥ 1.

• Standard p-series:
∑∞

n=1
1
np converges if p > 1, and diverges if p ≤ 1.

In this section, we test convergence of a complicated series
∑
an by comparing it to a

simpler one (such as the above): a convergent ceiling
∑
cn, or a divergent floor

∑
dn.

Direct Comparison Test: Let M be a positive integer starting point.

• If 0≤ an≤ cn for n≥M , and
∞∑
n=1

cn converges, then
∞∑
n=1

an converges.

• If an≥ dn≥ 0 for n≥M , and
∞∑
n=1

dn diverges, then
∞∑
n=1

an diverges.

These results are clear, since the series
∑∞

n=1 an is term-by-term smaller or larger
than its comparison series, except possibly the first M−1 terms.†

Example: Determine convergence of:
∞∑
n=1

n− 1

n2
√
n + 1

. We have:

an =
n− 1

n2
√
n + 1

≤ cn =
n

n2
√
n

=
1

n3/2
for n ≥ 1,

since on the left the numerator is smaller and the denominator is larger than on
the right. The comparison series

∑∞
n=1 cn =

∑∞
n=1

1
n3/2 is a standard p-series which

converges, so
∑∞

n=1 an also converges.

Example: Determine the convergence of:
∞∑
n=1

23n+sin(n)

3n + 4n2
.

As a rough guess, we ignore the lower-order terms in numerator and denominator
to compare with 23n

3n =
(
8
3

)n
, which makes a divergent geometric series, so our

series an should also diverge. However, it is not clear that an is really larger than
this comparison series, so we cannot use dn =

(
8
3

)n
as a divergent floor for an in the

second part of the Comparison Test.
We want to produce a fractional dn from our an by making the numerator smaller

and the denominator larger. To bound the numerator: 23n+sin(n) = 23n2sin(n) ≥

Notes by Peter Magyar magyar@math.msu.edu
∗A general divergent series might oscillate up and down forever, but a positive series (with an ≥ 0)

either levels off to a finite value, or diverges to infinity.
†Here we use the completeness axiom of real analysis, which states that if a series of partial sums

has an upper bound, sN =
∑N

n=1 an < B for all N , then the least upper bound L = lim
N→∞

sN exists.



23n2−1. To bound the denominator, we take an exponential function with a slightly
larger base: we can check that 4n ≥ 3n + 4n2 for all n ≥ 3. Thus:

an =
23n+sin(n)

3n + n2
≥ dn =

23n2−1

4n
= 1

22n for n ≥ 3.

Note that we only need the inequality for all large n: the first couple of terms a1, a2
make no difference to the convergence or divergence. Since

∑∞
n=1 dn =

∑∞
n=1

1
22n is

a divergent geometric series, the orginal
∑∞

n=1 an also diverges.

Example: Determine convergence of:
∞∑
n=1

n+ 1

n3 − 20
.

Again, we estimate this sequence by its leading terms:
∑∞

n=1
n
n3 =

∑∞
n=1

1
n2 ,

which is a convergent standard p-series. However, an = n+1
n3−20 >

n
n3 , so we cannot

use cn = n
n3 as a convergent ceiling for an in the first part of the Test.

However, we should have:

an =
n+ 1

n3 − 20
≤ cn = 2

n

n3
for n large enough.

How large does n need to be to make this inequality valid? Let us check:

n+ 1

n3 − 20
≤ 2

n2
⇐= 0 < n2(n+1) ≤ 2(n3−20) ⇐⇒ 40 ≤ n2(n−1) ⇐= n ≥ 4 .

Thus, we have:

an =
n+ 1

n3 − 20
≤ cn =

2

n2
for n ≥ 4,

where
∑∞

n=1
2
n2 = 2

∑∞
n=1

1
n2 converges, so the original

∑∞
n=1 an also converges.

example: Consider any infinite decimal:

s = 0.d1d2d3 · · · =
d1
10

+
d2
102

+
d3
103

+ · · · =

∞∑
n=1

dn
10n

,

where 0 ≤ dn ≤ 9 are any decimal digits. Does this series always converge, so that
the infinite decimal represents a real number, or could a bad choice of digits define a
meaningless decimal?

In fact, we can compare 0 ≤ dn
10n ≤

9
10n , since each digit is at most 9. The ceiling

is a convergent geometric series:
∑∞

n=1
9

10n =
∑∞

n=1
9
10

(
1
10

)n−1
= 9

10
1

1− 1
10

= 1, so the

original decimal sequence also converges. Any infinite decimal represents a number.

Limit Comparison Test. Suppose limn→∞
an
bn

= L with 0 < L <∞.

• If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

• If
∞∑
n=1

bn diverges, then
∞∑
n=1

an diverges.



Proof: limn→∞
an
bn

= L means that, for any small ε > 0, we can take a starting point
N so that for all n ≥ N , we have:

L−ε ≤ an
bn
≤ L+ε and (L−ε)bn ≤ an ≤ (L+ε)bn .

Taking ε small enough that L±ε > 0, we can prove convergence or divergence by
taking cn = (L+ε)bn or dn = (L−ε)bn in the Direct Comparison Test.

Example: We redo
∞∑
n=1

n+ 1

n3 − 20
. Now we can immediately compare with bn =

n

n3
:

an
bn

=
n+ 1

n3 − 20

/ n

n3
=

n+ 1

n

/
n3 − 20

n3
=

1 + 1
n

1− 20
n3

.

Taking n→∞ gives L = 1. Since this satisfies 0 < L <∞, and
∑∞

n=1 bn =
∑∞

n=1
1
n2

is a convergent standard p-series, the original series
∑∞

n=1 an also converges.

Extended Limit Comparison Test. In the case where limn→∞
an
bn

= L = 0,
we have an much smaller than bn, so if

∑∞
n=1 bn converges, then so does

∑∞
n=1 an.

Similarly, in the case where limn→∞
an
bn

= L = ∞, we have an much larger than bn,
so if

∑∞
n=1 bn diverges, then so does

∑∞
n=1 an.

example: Determine the convergence of:
∞∑
n=1

n2

2n
.

Since n2 is negligeable compared to the exponential growth of 2n, we could roughly
estimate this by

∑∞
n=1 bn =

∑∞
n=1

1
2n =

∑∞
n=1

(
1
2

)n
, a convergent geometric series, so

the original series should converge.
However, taking the Limit Comparison Test with this bn = 1

2n gives L =∞, since

an = n2

2n is much larger than bn. Thus this comparison fails: bn is a convergent floor
for an, and we can’t tell whether

∑
an converges or diverges.

Let us instead take a slightly larger, but still convergent, comparison: bn =
(
3
4

)n
:

lim
n→∞

an
bn

= lim
n→∞

n2
(
1
2

)n(
3
4

)n = lim
n→∞

n2
(
2
3

)n
= 0 ,

as we could prove by L’Hôpital’s Rule. Thus an = n2

2n becomes much smaller than bn,
and

∑∞
n=1 bn =

∑∞
n=1

(
3
4

)n
is a convergent ceiling for

∑∞
n=1 an, which therefore must

also converge.


