Convergence and divergence. We continue to discuss convergence tests: ways to tell if a given series $\sum_{n=1}^{\infty} a_{n}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} a_{n}$ converges (to a finite value), or diverges (to infinity or by oscillating).* So far, we know convergence for two kinds of standard series:

- Geometric series: $\sum_{n=1}^{\infty} c r^{n-1}$ converges to $\frac{c}{1-r}$ if $|r|<1$, diverges if $|r| \geq 1$.
- Standard $p$-series: $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$, and diverges if $p \leq 1$.

In this section, we test convergence of a complicated series $\sum a_{n}$ by comparing it to a simpler one (such as the above): a convergent ceiling $\sum c_{n}$, or a divergent floor $\sum d_{n}$.

Direct Comparison Test: Let $M$ be a positive integer starting point.

- If $0 \leq a_{n} \leq c_{n}$ for $n \geq M$, and $\sum_{n=1}^{\infty} c_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
- If $a_{n} \geq d_{n} \geq 0$ for $n \geq M$, and $\sum_{n=1}^{\infty} d_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

These results are clear, since the series $\sum_{n=1}^{\infty} a_{n}$ is term-by-term smaller or larger than its comparison series, except possibly the first $M-1$ terms. ${ }^{\dagger}$
Example: Determine convergence of: $\sum_{n=1}^{\infty} \frac{n-1}{n^{2} \sqrt{n}+1}$. We have:

$$
a_{n}=\frac{n-1}{n^{2} \sqrt{n}+1} \leq c_{n}=\frac{n}{n^{2} \sqrt{n}}=\frac{1}{n^{3 / 2}} \quad \text { for } n \geq 1,
$$

since on the left the numerator is smaller and the denominator is larger than on the right. The comparison series $\sum_{n=1}^{\infty} c_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ is a standard $p$-series which converges, so $\sum_{n=1}^{\infty} a_{n}$ also converges.
EXAMPLE: Determine the convergence of: $\sum_{n=1}^{\infty} \frac{2^{3 n+\sin (n)}}{3^{n}+4 n^{2}}$.
As a rough guess, we ignore the lower-order terms in numerator and denominator to compare with $\frac{2^{3 n}}{3^{n}}=\left(\frac{8}{3}\right)^{n}$, which makes a divergent geometric series, so our series $a_{n}$ should also diverge. However, it is not clear that $a_{n}$ is really larger than this comparison series, so we cannot use $d_{n}=\left(\frac{8}{3}\right)^{n}$ as a divergent floor for $a_{n}$ in the second part of the Comparison Test.

We want to produce a fractional $d_{n}$ from our $a_{n}$ by making the numerator smaller and the denominator larger. To bound the numerator: $2^{3 n+\sin (n)}=2^{3 n} 2^{\sin (n)} \geq$

[^0]$2^{3 n} 2^{-1}$. To bound the denominator, we take an exponential function with a slightly larger base: we can check that $4^{n} \geq 3^{n}+4 n^{2}$ for all $n \geq 3$. Thus:
$$
a_{n}=\frac{2^{3 n+\sin (n)}}{3^{n}+n^{2}} \geq d_{n}=\frac{2^{3 n} 2^{-1}}{4^{n}}=\frac{1}{2} 2^{n} \quad \text { for } n \geq 3 .
$$

Note that we only need the inequality for all large $n$ : the first couple of terms $a_{1}, a_{2}$ make no difference to the convergence or divergence. Since $\sum_{n=1}^{\infty} d_{n}=\sum_{n=1}^{\infty} \frac{1}{2} 2^{n}$ is a divergent geometric series, the orginal $\sum_{n=1}^{\infty} a_{n}$ also diverges.
Example: Determine convergence of: $\sum_{n=1}^{\infty} \frac{n+1}{n^{3}-20}$.
Again, we estimate this sequence by its leading terms: $\sum_{n=1}^{\infty} \frac{n}{n^{3}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, which is a convergent standard $p$-series. However, $a_{n}=\frac{n+1}{n^{3}-20}>\frac{n}{n^{3}}$, so we cannot use $c_{n}=\frac{n}{n^{3}}$ as a convergent ceiling for $a_{n}$ in the first part of the Test.

However, we should have:

$$
a_{n}=\frac{n+1}{n^{3}-20} \leq c_{n}=2 \frac{n}{n^{3}} \quad \text { for } n \text { large enough. }
$$

How large does $n$ need to be to make this inequality valid? Let us check:

$$
\frac{n+1}{n^{3}-20} \leq \frac{2}{n^{2}} \Longleftarrow 0<n^{2}(n+1) \leq 2\left(n^{3}-20\right) \quad \Longleftrightarrow 40 \leq n^{2}(n-1) \Longleftarrow n \geq 4 .
$$

Thus, we have:

$$
a_{n}=\frac{n+1}{n^{3}-20} \leq c_{n}=\frac{2}{n^{2}} \quad \text { for } n \geq 4,
$$

where $\sum_{n=1}^{\infty} \frac{2}{n^{2}}=2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, so the original $\sum_{n=1}^{\infty} a_{n}$ also converges.
example: Consider any infinite decimal:

$$
s=0 . d_{1} d_{2} d_{3} \cdots=\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\frac{d_{3}}{10^{3}}+\cdots=\sum_{n=1}^{\infty} \frac{d_{n}}{10^{n}},
$$

where $0 \leq d_{n} \leq 9$ are any decimal digits. Does this series always converge, so that the infinite decimal represents a real number, or could a bad choice of digits define a meaningless decimal?

In fact, we can compare $0 \leq \frac{d_{n}}{10^{n}} \leq \frac{9}{10^{n}}$, since each digit is at most 9 . The ceiling is a convergent geometric series: $\sum_{n=1}^{\infty} \frac{9}{10^{n}}=\sum_{n=1}^{\infty} \frac{9}{10}\left(\frac{1}{10}\right)^{n-1}=\frac{9}{10} \frac{1}{1-\frac{1}{10}}=1$, so the original decimal sequence also converges. Any infinite decimal represents a number.

Limit Comparison Test. Suppose $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$ with $0<L<\infty$.

- If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
- If $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Proof: $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$ means that, for any small $\epsilon>0$, we can take a starting point $N$ so that for all $n \geq N$, we have:

$$
L-\epsilon \leq \frac{a_{n}}{b_{n}} \leq L+\epsilon \quad \text { and } \quad(L-\epsilon) b_{n} \leq a_{n} \leq(L+\epsilon) b_{n}
$$

Taking $\epsilon$ small enough that $L \pm \epsilon>0$, we can prove convergence or divergence by taking $c_{n}=(L+\epsilon) b_{n}$ or $d_{n}=(L-\epsilon) b_{n}$ in the Direct Comparison Test.
Example: We redo $\sum_{n=1}^{\infty} \frac{n+1}{n^{3}-20}$. Now we can immediately compare with $b_{n}=\frac{n}{n^{3}}$ :

$$
\frac{a_{n}}{b_{n}}=\frac{n+1}{n^{3}-20} / \frac{n}{n^{3}}=\frac{n+1}{n} / \frac{n^{3}-20}{n^{3}}=\frac{1+\frac{1}{n}}{1-\frac{20}{n^{3}}} .
$$

Taking $n \rightarrow \infty$ gives $L=1$. Since this satisfies $0<L<\infty$, and $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a convergent standard $p$-series, the original series $\sum_{n=1}^{\infty} a_{n}$ also converges.

Extended Limit Comparison Test. In the case where $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L=0$, we have $a_{n}$ much smaller than $b_{n}$, so if $\sum_{n=1}^{\infty} b_{n}$ converges, then so does $\sum_{n=1}^{\infty} a_{n}$. Similarly, in the case where $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L=\infty$, we have $a_{n}$ much larger than $b_{n}$, so if $\sum_{n=1}^{\infty} b_{n}$ diverges, then so does $\sum_{n=1}^{\infty} a_{n}$.
EXAMPLE: Determine the convergence of: $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$.
Since $n^{2}$ is negligeable compared to the exponential growth of $2^{n}$, we could roughly estimate this by $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$, a convergent geometric series, so the original series should converge.

However, taking the Limit Comparison Test with this $b_{n}=\frac{1}{2^{n}}$ gives $L=\infty$, since $a_{n}=\frac{n^{2}}{2^{n}}$ is much larger than $b_{n}$. Thus this comparison fails: $b_{n}$ is a convergent floor for $a_{n}$, and we can't tell whether $\sum a_{n}$ converges or diverges.

Let us instead take a slightly larger, but still convergent, comparison: $b_{n}=\left(\frac{3}{4}\right)^{n}$ :

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}\left(\frac{1}{2}\right)^{n}}{\left(\frac{3}{4}\right)^{n}}=\lim _{n \rightarrow \infty} n^{2}\left(\frac{2}{3}\right)^{n}=0
$$

as we could prove by L'Hôpital's Rule. Thus $a_{n}=\frac{n^{2}}{2^{n}}$ becomes much smaller than $b_{n}$, and $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n}$ is a convergent ceiling for $\sum_{n=1}^{\infty} a_{n}$, which therefore must also converge.


[^0]:    Notes by Peter Magyar magyar@math.msu.edu
    *A general divergent series might oscillate up and down forever, but a positive series (with $a_{n} \geq 0$ ) either levels off to a finite value, or diverges to infinity.
    ${ }^{\dagger}$ Here we use the completeness axiom of real analysis, which states that if a series of partial sums has an upper bound, $s_{N}=\sum_{n=1}^{N} a_{n}<B$ for all $N$, then the least upper bound $L=\lim _{N \rightarrow \infty} s_{N}$ exists.

