For a series $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots$, determine if it converges toward a limit as we add more terms, or diverges (either to $\pm \infty$ or oscillating).

0 . If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series diverges by the n-th Term Test (Vanishing Test).

1. Try to manipulate the series into a Standard Series:

- Geometric series: $\sum_{n=1}^{\infty} c r^{n-1}=c+c r+c r^{2}+c r^{3}+\cdots=\left\{\begin{array}{cl}\frac{c}{1-r} & \text { for }|r|<1 \\ \text { diverges } & \text { for }|r| \geq 1 .\end{array}\right.$
- Standard p-series: $\sum_{n=1}^{\infty} \frac{1}{n^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots=\left\{\begin{array}{cl}\text { converges } & \text { for } p>1 \\ \text { diverges } & \text { for } p \leq 1 .\end{array}\right.$

2. If a_{n} is a fraction, estimate with a simpler fraction b_{n}, often a standard series, by taking only the largest term from the numerator and denominator of a_{n}.
Convergence of $\sum a_{n}$ is usually same as convergence of $\sum b_{n}$. Justify with a Test:

- Direct Comparison Test (positive a_{n})
- Ceiling $0 \leq a_{n} \leq c_{n}$ where $\sum c_{n}$ converges $\Longrightarrow \sum a_{n}$ also converges.
- Floor $0 \leq d_{n} \leq a_{n}$ where $\sum d_{n}$ diverges $\Longrightarrow \sum a_{n}$ also diverges.

The ceiling c_{n} or floor d_{n} will usually be closely related to the estimate b_{n}.

- Limit Comparison Test: Determine $L=\lim _{n \rightarrow \infty} a_{n} / b_{n}$.
- $|L|<\infty$ and $\sum b_{n}$ converges $\Longrightarrow \sum \sum^{n \rightarrow \infty} a_{n}$ also converges.
- $|L|>0$ and $\sum b_{n}$ diverges $\Longrightarrow \sum a_{n}$ also diverges.
[Compare with $(L-\epsilon) b_{n}<a_{n}<(L+\epsilon) b_{n}$ for $\left.n>N\right]$.*

3. Try the Integral Test if a_{n} is positive and fairly simple, but not comparable to a standard series: e.g. $\frac{1}{n \ln (n)}$. For positive, decreasing, continuous $f(x)$ with $a_{n}=$ $f(n)$, compute improper integral $\int_{1}^{\infty} f(x) d x=\lim _{N \rightarrow \infty} \int_{1}^{N} f(x) d x=\lim _{N \rightarrow \infty} F(N)-F(1)$.

- $\int_{1}^{\infty} f(x) d x$ converges $\Longrightarrow \sum a_{n}$ also converges $\left[\sum_{n=1}^{\infty} a_{n} \leq a_{1}+\int_{1}^{\infty} f(x) d x\right]$.
- $\int_{1}^{\infty} f(x) d x$ diverges $\Longrightarrow \sum a_{n}$ also diverges $\left[\sum_{n=1}^{\infty} a_{n} \geq \int_{1}^{\infty} f(x) d x\right]$.

4. Try the Ratio Test if a_{n} has a growing number of factors, for example if it contains r^{n} or n !. Determine $\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|=L$.

- $L<1 \Longrightarrow \sum a_{n}$ converges $\left[\left|a_{n}\right| \leq c(L+\epsilon)^{n}\right.$ for $\left.n>N\right]$.
- $L>1 \Longrightarrow \sum a_{n}$ diverges $\left[\left|a_{n}\right| \geq c(L-\epsilon)^{n}\right.$ for $\left.n>N\right]$.
- $L=1 \Longrightarrow$ no conclusion. [e.g. any standard p-series]

5. If $\sum a_{n}$ has positive and negative terms, try:

- Absolute Convergence: $\sum\left|a_{n}\right|$ converges $\Longrightarrow \sum a_{n}$ also converges.
- Alternating Series: $a_{n}=(-1)^{n-1} b_{n}$ with $b_{n} \geq 0$:
$\lim _{n \rightarrow \infty} b_{n}=0, b_{n}$ decreasing $\Longrightarrow \sum a_{n}$ converges.
Error estimate: $\sum_{n=1}^{2 N} a_{n} \leq \sum_{n=1}^{\infty} a_{n} \leq \sum_{n=1}^{2 N} a_{n}+b_{2 N+1}$.

[^0]
[^0]: Notes by Peter Magyar magyar@math.msu.edu
 *Most later tests are proved by reducing to a Direct Comparison, specified in [brackets]

