Math 133 Method for Convergence Testing Stewart §11.7

For a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, determine if it converges toward a limit as we add more terms, or diverges (either to $\pm \infty$ or oscillating).

- 0. If $\lim_{n\to\infty} a_n \neq 0$, then the series diverges by the *n*-th Term Test (Vanishing Test).
- 1. Try to manipulate the series into a Standard Series:
 - Geometric series: $\sum_{n=1}^{\infty} cr^{n-1} = c + cr + cr^2 + cr^3 + \dots = \begin{cases} \frac{c}{1-r} & \text{for } |r| < 1\\ \text{diverges} & \text{for } |r| \ge 1. \end{cases}$

• Standard *p*-series:
$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots = \begin{cases} \text{converges} & \text{for } p > 1 \\ \text{diverges} & \text{for } p \le 1. \end{cases}$$

- 2. If a_n is a fraction, estimate with a simpler fraction b_n , often a standard series, by taking only the *largest* term from the numerator and denominator of a_n . Convergence of $\sum a_n$ is usually same as convergence of $\sum b_n$. Justify with a Test:
 - Direct Comparison Test (positive a_n)
 - Ceiling $0 \le a_n \le c_n$ where $\sum c_n$ converges $\implies \sum a_n$ also converges. • Floor $0 \le d_n \le a_n$ where $\sum d_n$ diverges $\implies \sum a_n$ also diverges.

The ceiling c_n or floor d_n will usually be closely related to the estimate b_n .

- Limit Comparison Test: Determine $L = \lim_{n \to \infty} a_n / b_n$.
 - $\circ |L| < \infty$ and $\sum b_n$ converges $\implies \sum_{n \to \infty}^{n \to \infty} a_n$ also converges.
 - |L| > 0 and $\sum b_n$ diverges $\implies \sum a_n$ also diverges. [Compare with $(L-\epsilon)b_n < a_n < (L+\epsilon)b_n$ for n > N].*
- 3. Try the Integral Test if a_n is positive and fairly simple, but not comparable to a standard series: e.g. $\frac{1}{n\ln(n)}$. For positive, decreasing, continuous f(x) with $a_n = f(n)$, compute improper integral $\int_1^\infty f(x) dx = \lim_{N \to \infty} \int_1^N f(x) dx = \lim_{N \to \infty} F(N) F(1)$.

◦
$$\int_{1}^{\infty} f(x) dx$$
 converges $\implies \sum a_n$ also converges $[\sum_{n=1}^{\infty} a_n \le a_1 + \int_{1}^{\infty} f(x) dx]$.
◦ $\int_{1}^{\infty} f(x) dx$ diverges $\implies \sum a_n$ also diverges $[\sum_{n=1}^{\infty} a_n \ge \int_{1}^{\infty} f(x) dx]$.

- 4. Try the Ratio Test if a_n has a growing number of factors, for example if it contains r^n or n!. Determine $\lim_{n \to \infty} |a_{n+1}/a_n| = L$.
 - $L < 1 \implies \sum a_n$ converges $[|a_n| \le c(L+\epsilon)^n \text{ for } n > N].$
 - $L > 1 \implies \sum a_n$ diverges $[|a_n| \ge c(L-\epsilon)^n$ for n > N].
 - $\circ L = 1 \implies$ no conclusion. [e.g. any standard *p*-series]
- 5. If $\sum a_n$ has positive and negative terms, try:
 - Absolute Convergence: $\sum |a_n|$ converges $\implies \sum a_n$ also converges.
 - Alternating Series: a_n = (-1)ⁿ⁻¹b_n with b_n ≥ 0: lim b_n = 0, b_n decreasing ⇒ ∑a_n converges. Error estimate: ∑^{2N}_{n=1} a_n ≤ ∑[∞]_{n=1} a_n ≤ ∑^{2N}_{n=1} a_n + b_{2N+1}.

Notes by Peter Magyar magyar@math.msu.edu

^{*}Most later tests are proved by reducing to a Direct Comparison, specified in [brackets]