
Math 133 More Power Series Stewart §11.9

Calculus on power series. In this section, we will finally be able to give series
for some interesting numbers and functions. The cornerstone we build on is the
geometric series 1

1−r =
∑∞

n=0 r
n, which we manipulate into much more interesting

series formulas. Now, series of numbers can only be manipulated by algebra; but we
have introduced series of functions (power series), where we can apply the calculus
operations of differentiation and integration.

Theorem: Given a power series convergent for |x−a| < R, for some R > 0:

f(x) =
∞∑
n=0

cn(x−a)n = c0 + c1(x−a) + c2(x−a)2 + c3(x−a)3 + · · · .

Then we have:

• For |x−a| < R, the derivative is:

f ′(x) =
∞∑
n=0

n cn(x−a)n−1 = c1 + 2c2(x−a) + 3c3(x−a)2 + · · · .

• For |x−a| < R, the antiderivative is:∫
f(x) dx = C +

∞∑
n=0

cn
(x−a)n+1

n+1
= C + c0(x−a) + c1

(x−a)2

2
+ c2

(x−a)3

3
+ · · · .

That is, we can differentiate and integrate a power series term by term.

Derivatives of geometric series. We think of the geometric series as a function:

f(x) =
1

1−x
=

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 · · · ,

Its first two derivatives are, for |x| < 1:

f ′(x) =
1

(1−x)2
=

∞∑
n=0

nxn−1 = 1 + 2x+ 3x2 + 4x3 + · · · ,

f ′′(x) =
2

(1−x)3
=

∞∑
n=0

n(n−1)xn−2 = 2 + 3 · 2x+ 4 · 3x2 + · · · .

This lets us find the sums of many series similar to geometric series.

example: Find the sum

∞∑
n=1

n2

3n
=

1

3
+

4

9
+

9

27
+

16

81
+ · · · . The first 10 terms sum

Notes by Peter Magyar magyar@math.msu.edu



to about 1.499, so we can guess the answer is 3
2 , but how to be sure? Consider the

series as one output of a function; it is g(13) for:

g(x) =

∞∑
n=0

n2xn = x+ 4x2 + 9x3 + 16x4 + · · · .

We can write this in terms of our known series because n2 = n(n−1) + n, so that:

g(x) =
∑∞

n=0 n
2xn =

∑∞
n=0 n(n−1)xn +

∑∞
n=0 nx

n

= x2
∑∞

n=0 n(n−1)xn−2 + x
∑∞

n=0 nx
n−1

= x2 2
(1−x)3 + x 1

(1−x)2 = x(x+1)
(1−x)3 .

Hence our series sums to g(13) =
1
3
( 1
3
+1)

(1− 1
3
)3

= 3
2 . Fun!

Integrals of geometric series. Using the second part of the Theorem, we integrate
the geometric series formula 1

1−x =
∑∞

n=0 x
n:∫

1

1− x
dx = − log(1−x) = C +

∞∑
n=0

1

n+1
xn+1 = C + x+

x2

2
+
x3

3
+
x4

4
· · · .

To determine the correct constant C, we use the initial value at x = 0: the left side
becomes − log(1 − 0) = 0, the right side C + 0 + 02

2 + · · · = C, so C = 0. We can
manipulate this into an expression for ln(x) itself:

ln(1+x) = − (− ln(1−(−x))) = −
(

(−x) + (−x)2
2 + (−x)3

3 + (−x)4
4 + · · ·

)
= x− 1

2x
2 + 1

3x
3 − 1

4x
4 + · · ·

ln(x) = ln(1+(x−1)) = (x−1)− 1
2(x−1)2 + 1

3(x−1)3 − 1
4(x−1)4 + · · ·

The first series converges for |x| < 1, so plugging x−1 in place of x, we find that the
last series converges for |x−1| < 1. We conclude:

ln(x) =

∞∑
n=1

(−1)n

n
(x−1)n for |x−1| < 1.

For example, taking x = 1
2 , we get x−1 = −1

2 , and:

ln(12) = (−1
2)− 1

2(−1
2)2 + 1

3(−1
2)3 − 1

4(−1
2)4 + · · · .

Since ln(12) = − ln(2), we conclude:

ln(2) =

∞∑
n=1

1

n 2n
=

1

2
+

1

2 · 22
+

1

3 · 23
+

1

4 · 24
+ · · · .

Since the denominator grows quickly, the series converges rapidly and gives a good
approximation to ln(2) = 0.69314 · · · after only a few terms. For example, the first
10 terms give:

∑10
n=1

1
n 2n = 0.69306 · · · , accurate to 3 or 4 decimal places. When a

calculator or Wolfram Alpha computes logarithms, it is using some method similar
to this, taking enough terms to obtain the desired number of decimal places.



Series for π. We obtained the series for logarithm because it is an inverse function
whose derivative is a rational function (see the Inverse Derivative Theorem in §6.1).
We can do the same for the arctangent:

1

1+x2
=

1

1−(−x)2
=

∞∑
n=0

(−x2)n =

∞∑
n=0

(−1)nx2n = 1− x2 + x4 − x6 + · · ·

tan−1(x) =

∫
1

1+x2
dx =

∞∑
n=0

(−1)n
x2n+1

2n+1
= x− x3

3
+
x5

5
− x7

7
+ · · · .

We know there is no constant shift because both sides are 0 at x = 0. The series
converges for |x| < 1. Since tan(π4 ) = 1, we have:

π

4
= tan−1(1) = 1− 1

3
+

1

5
− 1

7
+ · · · .

Here we must be careful, since x = 1 is all the way at the edge of the interval of
convergence: the series is not absolutely convergent, but we can show conditional
convergence by the Alternating Series Test (§11.6/II). (Also, Abel’s Theorem∗ shows
that the convergent series gives the expected value tan−1(1).)

This is known as the Leibnitz formula. It is astonishing because the series is so
simple and seemingly has no relation to circles or angles. It can be used to compute
π (multiplying both sides by 4), but it is inefficient because of the slow convergence.
It takes about 200 terms to get 2 decimal places of accuracy, π ≈ 3.14.

Machin’s trick gives an efficient series. Angle addition tan(α + β) = tanα+tanβ
1−tanα tanβ

for x = tanα, y = tanβ gives: arctanx + arctan y = arctan( x+y1−xy ). We want small

x, y with x+y
1−xy = 1, to get arctanx+ arctan y = arctan 1 = π

4 . This is the hyperbola

(x+1)(y+1) = 2, with a rational point (x, y) = (12 ,
1
3). Thus

π = 4
(
arctan(12) + arctan(13)

)
=
∞∑
n=0

(−1)n 4
2n+1( 1

22n+1 + 1
32n+1 ).

Up to n = 3, this gives π to 2 decimal places; n = 15 gives 10 places: 3.1415926535. . .
∗Theorem: Let f(x) =

∑∞
n=0 anx

n converge for |x| < R, and suppose f(R) =
∑∞
n=0 anR

n exists.
Then limx→R− f(x) = f(R), so the power series defines a left-continuous function at x = R.
Proof: Replacing f(x) with f(Rx), we can assume R = 1. Replacing a0 with a0 −

∑∞
n=1 an, we can

assume f(1) =
∑∞
n=0 an = 0. We must show limx→1− f(x)

def
= limx→1−

∑∞
n=0 anx

n ?
= 0.

Abel’s summation-by-parts formula: for sequences {an}, {bn}, with sn =
∑n
k=0 ak, we have∑N

n=0 anbn = sNbN+1 −
∑N
n=0 sn(bn+1−bn). For bn = xn with bn+1 − bn = (x−1)xn, we have∑N

n=0 anx
n = sNx

N+1 + (1−x)
∑N
n=1 snx

n.

For fixed 0 < x < 1, N → ∞, f(x) = (1−x)
∑∞
n=0 snx

n. Given any ε > 0, we must choose x
close enough to 1 to force |f(x)| = (1−x)

∣∣∑∞
n=0 snx

n
∣∣ < ε. First choose N large enough that

|sn| =
∣∣∑n

k=0 an
∣∣ < 1

2
ε for n ≥ N . Then choose (1−x) small enough that (1−x)

∣∣∣∑N−1
n=0 snx

n
∣∣∣ < 1

2
ε:

|f(x)| ≤ (1−x) |
∑N−1
n=0 snx

n|+ (1−x) |
∑∞
n=N snx

n|

≤ 1
2
ε+ (1−x)

∑∞
n=N

1
2
ε xn = 1

2
ε+ 1

2
ε(1−x) x

N

1−x < ε. �

Now, for f(x) = x− x3

3
+ x5

5
− · · · , we know that f(x) = tan−1(x) for |x| < 1, and Abel’s Theorem

gives f(1) = limx→1− f(x) = limx→1− tan−1(x) = tan−1(1) = π
4

.


