Region between two parabolas. We have seen that geometrically, the integral $\int_{a}^{b} f(x) d x$ computes the area between a curve $y=f(x)$ and an interval $x \in[a, b]$ on the x-axis (with area below the axis counted negatively). In Calculus II, we will show the versatility of the integral to compute all kinds of areas, lengths, volumes: almost any measure of size for a geometric object.

In this section, we compute more general areas: those between two given curves $y=f(x)$ and $y=g(x)$, usually with no boundary on the x-axis.
EXAMPLE: Consider the region with top boundary $y=f(x)=x^{2}+x+1$, bottom boundary $y=g(x)=2 x^{2}-1$, left boundary the y-axis $x=0$, right boundary $x=1$:*

$$
\begin{aligned}
R & =\{(x, y) \text { with } g(x) \leq y \leq f(x) \text { and } x \in[0,1]\} . \\
& =\left\{(x, y) \text { with } 2 x^{2}-1 \leq y \leq x^{2}+x+1 \text { and } 0 \leq x \leq 1\right\} .
\end{aligned}
$$

Here $y=g(x)=2 x^{2}-1$ is a standard parabola shifted downward, with minimum point $x=0$. The curve $y=f(x)=x^{2}+x+1$ is roughly like its leading term $y=x^{2}$, a parabola opening upward; its minimum point satisfies $\left(x^{2}+x+1\right)^{\prime}=2 x+1=0$, i.e. $x=-\frac{1}{2}$.

To compute the area of R, we use the same geometric-numerical strategy as for the region under a single curve: split R into n thin vertical slices of width $\Delta x=\frac{1}{n}$, each approximately a rectangle; then add up the rectangle areas and take the limit as n becomes larger and larger. In the interval $x \in[0,1]$, we take sample points x_{1}, \ldots, x_{n}, one in each Δx increment. The slice at position x_{i} has height equal to the ceiling minus the floor, $f\left(x_{i}\right)-g\left(x_{i}\right)$, so:

$$
\text { area of slice } \approx(\text { height }) \times(\text { width })=\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x
$$

[^0]and the total area is:
\[

$$
\begin{aligned}
& A_{[0,1]}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x=\int_{0}^{1}(f(x)-g(x)) d x \\
& =\int_{0}^{1}\left(x^{2}+x+1\right)-\left(2 x^{2}-1\right) d x=\left[2 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{x=0}^{x=1}=\frac{13}{6}
\end{aligned}
$$
\]

EXAMPLE: Next, consider the region between the same curves $y=f(x)=x^{2}+x+1$ and $y=g(x)=2 x^{2}-1$, but above the interval $x \in[1,3]$. To picture the region without a calculator, we determine the intersection points where the curves cross:

$$
\begin{gathered}
f(x)=g(x) \Longleftrightarrow x^{2}+x+1=2 x^{2}-1 \Longleftrightarrow \\
x^{2}-x-2=0 \Longleftrightarrow x=\frac{1 \pm \sqrt{1^{2}-4(1)(-2)}}{2(1)}=\frac{1 \pm 3}{2}=-1 \text { or } 2
\end{gathered}
$$

by the Quadratic Formula. Only $x=2$ is relevant for our region above $x \in[1,3]$. At $x=1$ we have $g(1)<f(1)$, so to the left of $x=2$, our region is defined by $g(x) \leq y \leq f(x)$. At $x=3$, we have $f(3)<g(3)$, so to the right of $x=2$, it is $f(x) \leq y \leq g(x):$

Repeating our previous area formula for the two parts of our region gives:

$$
\begin{aligned}
A_{[1,3]} & =A_{[1,2]}+A_{[2,3]}=\int_{1}^{2}(f(x)-g(x)) d x+\int_{2}^{3}(g(x)-f(x)) d x \\
& =\int_{1}^{2}\left(2+x-x^{2}\right) d x+\int_{2}^{3}\left(-2-x+x^{2}\right) d x=\frac{7}{6}+\frac{11}{6}=3
\end{aligned}
$$

EXAMPLE: Finally, we consider the same curves $y=f(x)=x^{2}+x+1$ and $y=$ $g(x)=2 x^{2}-1$, but we take the entire finite region between them:

$$
R^{\prime}=\{(x, y) \text { with } g(x) \leq y \leq f(x)\} .
$$

Here the top boundary is $y=x^{2}+x+1$ and the bottom boundary is $y=2 x^{2}-1$, but we have not specified an x interval. However, we have already computed the intersection points $x=-1$ and $x=2$, and the curves do not enclose any finite regions beyond these points. Thus:

$$
A_{[-1,2]}=\int_{-1}^{2}(f(x)-g(x)) d x=\frac{9}{2} .
$$

We can generalize the above examples in:
Theorem: The area of the region enclosed between $f(x)$ and $g(x)$ for $x \in[a, b]$ is: $A=\int_{a}^{b}|f(x)-g(x)| d x$.

The absolute value signs ensure we take the integral of top minus bottom, regardless of which is which. In practice, we must find the intersection points where $f(x)=g(x)$, which split the integral into intervals where $g(x) \leq f(x)$ versus $f(x) \leq g(x)$.

Integrating with respect to y . Consider the region:

$$
R=\left\{(x, y) \text { with } y^{2} \leq x \leq y+1\right\} .
$$

Here the boudary curves are naturally graphs in which y is the independent variable: the right boundary is the line $x=f(y)=y+1$; and the left boundary is $x=g(y)=y^{2}$, a parabola opening to the right.

Understand: it is merely by habit that we consider y as a function of x. We can make x a function of y instead if it is more convenient, and the same formulas will work if we switch the roles of x and y. Thus, we find the intersection points: $y+1=y^{2}$ when $y=\frac{1 \pm \sqrt{5}}{2}$ by the Quadratic Formula. The area as:

$$
A=\int_{\frac{1-\sqrt{5}}{2}}^{\frac{1+\sqrt{5}}{2}}(y+1)-\left(y^{2}\right) d y=\left[\frac{1}{2} y^{2}+y-\frac{1}{3} y^{3}\right]_{y=\frac{1-\sqrt{5}}{2}}^{y=\frac{1+\sqrt{5}}{2}}=\frac{5}{6} \sqrt{5} .
$$

Here $\left((y+1)-\left(y^{2}\right)\right) d y$ represents the area of the horizontal slice of the region at height y, with thickness $d y$.

To check this, we re-do it from our usual perspective, using x as the independent variable. This makes it more complicated, since we must consider the region as having three boundary graphs: upper boundary $y=\sqrt{x}$, lower right boundary $y=x-1$, and lower left boundary $y=-\sqrt{x}$. The intersection points are:

- Between $y=\sqrt{x}$ and $y=x-1: \quad x=\frac{3+\sqrt{5}}{2}$ (upper right corner)
- Between $y=-\sqrt{x}$ and $y=x-1: \quad x=\frac{3-\sqrt{5}}{2} \quad$ (lower middle corner)
- Between $y=\sqrt{x}$ and $y=-\sqrt{x}: \quad x=0$ (left end)

These split the region into left and right parts:

The area is:

$$
A=\int_{0}^{\frac{3-\sqrt{5}}{2}}(\sqrt{x})-(-\sqrt{x}) d x+\int_{\frac{3-\sqrt{5}}{2}}^{\frac{3+\sqrt{5}}{2}}(\sqrt{x})-(x-1) d x
$$

which after much algebra gives the same answer as before: $\frac{5}{6} \sqrt{5}$.

[^0]: Notes by Peter Magyar magyar@math.msu.edu
 *We specify the region as the set of all points (x, y) which satisfy the given conditions.

