
Math 133 Volume Stewart §5.2

Geometry of integrals. In this section, we will learn how to compute
volumes using integrals defined by slice analysis. First, we recall from Cal-
culus I how to compute areas. Given the region under a graph y = f(x)
and above an interval [a, b] on the x-axis, we slice up the interval into n
increments (small parts) of width ∆x = b−a

n , with division points:

a < a+∆x < a+2∆x < · · · < a+n∆x = b,

and we take sample points x1, . . . , xn, one in each increment. This slices the
area into increments ∆A1, . . . ,∆An, each approximately a rectangle:

The area of an increment is approximately:

∆Ai ≈ (height)×(width) = f(xi) ∆x ,

so the total area is the Riemann sum (see §4.1 Pt 1):

A =
n∑
i=1

∆Ai ≈
n∑
i=1

f(xi)∆x .

Taking the limit of very many, very thin slices defines the integral, which
computes the exact area:

A = lim
n→∞

n∑
i=1

f(xi)∆x =

∫ b

a
f(x) dx .

This only gives approximate numerical answers to our question, though,
unless we can determine the limit, which is very difficult directly (§4.1 Pt
2).

So far, there is no really surprising idea here: for thousands of years,
mathematicians used similar methods to compute areas, with very limited
success. The genius of Newton shines in three ideas which solve the problem,
easily computing almost any area (§4.3). The first idea is to make area into
a function: A(x) =

∫ x
a f(t) dt is the area over a variable interval t ∈ [a, x].

Second, we find that A′(x) = f(x): amazingly, the area function is an
antiderivative of f(x), because the rate of change of area is the height of
the graph at the moving endpoint. That is, as x moves rightward, A(x)
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increases quickly or slowly depending on how high f(x) is: this is the First
Fundamental Theorem.

The third and clinching idea is the algebra of differentiation. If we can
reverse the derivative rules to find another antiderivative, a known func-
tion F (x) with F ′(x) = f(x), then the Uniqueness Theorem (§3.2) tells us
that the two antiderivatives are the same, except for adding some constant:
A(x) =

∫ x
a f(t) dt = F (x) + C. Since 0 = A(a) = F (a) + C, we must have

C = −F (a), so A(x) = F (x)− F (a), the Second Fundamental Theorem:

A = A(b) =

∫ b

a
f(x) dx = F (b)− F (a).

That is, if f(x) is the rate of change of F (x), so that ∆Fi = f(xi)∆x are
the small changes (increments) of F (x), then the integral is the total change
in F (x) over the interval [a, b].∗

These three brilliant ideas, working perfectly together, make it easy to
compute the areas of most shapes, provided we are skillful enough at revers-
ing derivative rules to find indefinite integrals.

example: Find the area of the leftmost region enclosed below the curve
y = x cos(x2) and above the line y = −x.

The left corner of the region is at x = 0. To find the right corner, we set
x cos(x2) = −x and get x(1+ cos(x2)) = 0, whose smallest positive solution
is x =

√
π ≈ 1.77 .

To compute the area, we consider thin slices from the top curve to the
bottom line, with height x cos(x2)− (−x) = x cos(x2) + x, and take a limit
of Riemann sums to get:

A =

∫ √π
0

(
x cos(x2) + x

)
dx =

∫ √π
0

x cos(x2) dx +

∫ √π
0

x dx.

We can evaluate the first term using the substitution u = x2, du = 2x dx,
so
∫
x cos(x2) dx = 1

2

∫
cos(x2) 2x dx = 1

2

∫
cos(u) du = 1

2 sin(u) = 1
2 sin(x2).

A =
[

1
2 sin(x2) + 1

2x
2
]x=
√
π

x=0
= 1

2π ≈ 1.57 .

∗The indefinite integral
∫
f(x) dx = F (x) + C is the general antiderivative function,

also called the primitive function. The definite integral
∫ b

a
f(x) = F (b)−F (a) is a number.



That looks about right from the picture. Not a result you could get from
elementary geometry!

Solids of revolution. The integral is a very powerful tool to compute
the total of many small parts, such as the thin slices which fill up an area.
A similar method allows us to compute volumes. We start with a solid of
revolution which is formed by rotating a region in the plane around the x-
axis, sweeping out a kind of barrel shape.

The total volume is the sum of n disk slices at sample points x1, . . . , xn in
[a, b], each with radius f(xi) and thickness ∆x = b−a

n .

The volume of each slice is approximately:

∆Vi ≈ (circle area)×(thickness) = πf(xi)
2 ∆x ,

and taking the limit as n→∞ gives the exact volume as an integral:

V = lim
n→∞

n∑
i=1

πf(xi)
2 ∆x =

∫ b

a
πf(x)2 dx .

Once we express our answer as an integral, we no longer consider its geo-
metric motivation: finding an antiderivative and determining the value is a
purely algebraic problem.



This analysis should not be surprising: we expect our answer to converge
to an integral as soon as we can slice up the problem into small increments.

example: Find the volume of the trumpet solid obtained by rotating around
the x-axis the region defined by: 0 ≤ y ≤ 1

x and 1 ≤ x ≤ 2. This is the solid
of revoltion of the curve y = 1

x over the interval x ∈ [a, b].

Applying our formula:

V =

∫ 2

1
π
(

1
x

)2
dx =

∫ 2

1
πx−2 dx

=
[
−πx−1

]x=2

x=1
= (−π2−1)− (−π1−1) = π

2 .

example: Find the volume of the solid obtained by rotating the region
defined by x2 ≤ y ≤ 2 and x ≥ 1, around the vertical axis x = 1.

The setup is different from the x-axis rotation, so we must repeat our slice
analysis. Since we rotate around the vertical line x = 1, we should take
horizontal slices positioned by their height y, and we should write our region
as lying next to the interval y ∈ [1, 2] between the curves x = 1 and x =

√
y.

Our slices are thin horizontal disks at sample heights y1, . . . , yn in the
interval y ∈ [1, 2]. The thickness of each disk is ∆y. The radius at height
yi is the horizontal distance from the axis x = 1 to the curve x =

√
y; this



distance is
√
yi − 1. The volume of each disk is ∆Vi ≈ π(

√
yi−1)2 ∆y, and:

V =

∫ 2

1
π(
√
y−1)2 dy =

∫ 2

1
π(y−2

√
y+1) dy =

[
π
(

1
2y

2−4
3y

3/2+y
)]y=2

y=1
= π

(
23
6 −

8
√

2
3

)
.

Solids with specified cross sections. Let us consider a solid rather like
the sail of the man-of-war jellyfish. It has a base outlined by the circle
x2 + y2 = 1, and its vertical cross section over each line x = c is an isosceles
right triangle, with height equal to half its base.

The slices are defined over x ∈ [−1, 1], with each slice at x = xi having

thickness ∆x and area 1
2(base)×(height) = 1

2

(
2
√

1−x2
i

)(√
1−x2

i

)
. Thus:

V =

∫ 1

−1

1
2

(
2
√

1−x2
)(√

1−x2
)
dx =

∫ 1

−1
1−x2 dx =

[
x−1

3x
3
]x=1

x=−1
= 4

3 .

Method of slice analysis to compute size. We have now seen several
cases where we compute the size or bulk of geometric objects. Let S denote
any measure of the size of an object: length, area, volume, mass, etc.

1. Cut the object into slices whose position is determined by some vari-
able x ∈ [a, b].

2. Mark off the interval [a, b] into n increments of width ∆x = b−a
n ,

each with a sample point xi . This splits the object into n slices, and
summing up their sizes gives the total size: S =

∑n
i=1 ∆Si .

3. Because the slice at xi is so thin, we can find a good approximation of
its size by some simple formula of the form ∆Si ≈ f(xi) ∆x.

4. Taking n→∞ and ∆x→ 0, the approximation becomes exact:

S = lim
n→∞

n∑
i=1

f(xi) ∆x =

∫ b

a
f(x) dx .

5. Having expressed S =
∫ b
a f(x) dx, we evaluate this integral by algebraic

or numerical techniques.



challenge problem: Consider the solid of revolution around the x-axis
of the curve y = f(x) over the interval x ∈ [a, b]. Explain the following
formula for the surface area of this solid:

S =

∫ b

a
2πf(x)

√
1+(f ′(x))2 dx .

Hint:
√

(∆x)2 + (∆y)2 =
√

1 + ( ∆y
∆x)2 ∆x ≈

√
1 + ( dydx)2 ∆x.


