
Math 133 Natural Logarithms Stewart §6.2

Review of exponential and logarithm functions. We recall some facts from alge-
bra, which we will later prove from a calculus point of view. In an expression of the
form ap, the number a is called the base and the power p is the exponent. An exponential
function∗ is of the form f(x) = ax. It is defined for rational x = m

n by am/n = n
√
a · · · a

(m factors), a−x = 1/ax, a0 = 1; but this is harder to define for irrational exponents like
a
√

2. We have addition and multiplication formulas: ax1ax2 = ax1+x2 and (ax)p = apx.
Given the exponential function f(x) = ax, the logarithm function is the inverse

f−1(x) = loga(x), as defined in §6.1.†

That is, the equation y = ax is by definition solved as x = loga(y), and we have
loga(ax) = x and aloga(y) = y. Every fact about the exponential function corresponds
to an inverse fact about the logarithm. Setting y1 = ax1 , x1 = log(y1); and y2 = ax2 ,
x2 = log(y2); the addition formula becomes:

ax1ax2 = ax1+x2 =⇒ y1y2 = alog(y1)+log(y2)

=⇒ log(y1y2) = log(y1) + log(y2).

Setting y = ax, x = log(y), the multiplication formula becomes:

(ax)p = apx =⇒ yp = ap log(y)

=⇒ log(yp) = p log(y).

example: Expand the expression log
√

x+1
x−1 as much as possible into a sum of simple

terms. Using the addition and multiplication formulas:

log
√

x+1
x−1 = log

(
(x+1)(x−1)−1

)1/2

= 1
2( log(x+1) + (−1) log(x−1) )

= 1
2 log(x+1)− 1

2 log(x−1).

Notes by Peter Magyar magyar@math.msu.edu
∗Do not confuse this with a power function of the form f(x) = xp

†If the base a is understood, we write simply log(x). In science and engineering literature, if there is
no base specified, we assume the base a = 10.



Natural exponential and logarithm. In the physical world, an exponential function
f(t) = at typically appears as the size of a population which is self-reproducing. This
means the population growth rate, the number of births per unit time, is proportional
to the current population size:

f ′(t) = c f(t) .

It is a fact (proven below) that any exponential function f(t) = at satisfies this equation
for some constant c.‡

The natural exponential function uses the unique choice of base a = e = 2.718 · · ·
which makes the above constant c = 1. That is, if we write f(x) = exp(x) = ex, then:

f ′(x) = f(x), exp′(x) = exp(x), (ex)′ = ex.

The natural logarithm is the inverse function of f(x) = exp(x), namely f−1(x) = ln(x) =
loge(x), so y = ex means x = ln(y). As in §6.1, to find the derivative of ln(x), we
differentiate x = exp(ln(x)):

1 = exp′(ln(x)) · ln′(x) = exp(ln(x)) ln′(x) = x ln′(x) =⇒ ln′(x) =
1

x
.

Amazingly, though the definition of ln(x) was complicated, its derivative is the extremely
simple function 1

x .

example: Find the derivative of f(x) = ln(x2+1). Taking outside function ln(x) with
ln′(x) = 1

x , and inside function x2+1, the Chain Rule gives:

f ′(x) = ln′(x2+1) · (x2+1)′ =
1

x2+1
· (2x) =

2x

x2+1
.

example: Find the derivative of f(x) = ln(sin(x)). From the Chain Rule;

f ′(x) = ln′(sin(x)) · sin′(x) =
1

sin(x)
· cos(x) = cot(x).

example: Find the derivative of f(x) =
(x+1)3 sin2(x)

(2x+1)5
using the shortcut of logarithmic

differentiation, Take log of both sides, turning products into sums, then differentiate:

ln f(x) = 3 ln(x+1) + 2 ln(sin(x))− 5 ln(2x+1)

(ln f(x))′ = 3 ln(x+1)′ + 2 ln(sin(x))′ − 5 ln(2x+1)′

1

f(x)
f ′(x) = 3

1

x+1
+ 2

1

sin(x)
cos(x)− 5

1

2x+1
(2)

f ′(x) =
(x+1)3 sin2(x)

(2x+1)5

(
3

x+1
+ 2 cot(x)− 10

2x+1

)
.

Logarithms and integrals. Reversing our new basic derivative ln′(x) = 1
x , we see∫

1
x dx = ln(x) + C, the antiderivative of 1

x = x−1, a key function which we previously

‡Mathematical laws in science are typically stated in such differential equations, in which an unknown
function f(t) has a specified relation with its rate of change f ′(t), its acceleration f ′′(t), etc. For example,
Newton’s law of universal gravitation is essentially f ′′(t) = −c/f(t)2.



could not integrate. (The usual power function formula would give the nonsense answer∫
x−1 dx

??
= 1
−1+1x

−1+1 = 1
0x

0.) Thus the Second Fundamental Theorem of Calculus
(§4.3) tells us, for a, b > 0:∫ b

a

1

x
dx =

[
ln(x)

]x=b

x=a
= ln(b)− ln(a).

To extend to negative x, we use:∫
1

x
dx = ln |x|+ C =⇒

∫ b

a

1

x
dx = ln|b| − ln|a| for a, b < 0.

Geometrically, ln(x) =
∫ x

1
1
t dt is the area under y = 1

x and above the interval [1, x].

Calculators and computers need an approximation algorithm to compute values of ln(x)
more efficiently than just guessing solutions of ey = x. The integral above allows us to
approximate a natural logarithm as a Riemann sum. For example, to compute

ln(2) = 0.693147 · · · ,

split the interval [1, 2] into n = 100 increments of size ∆x = 2−1
n = 0.01, take sample

points xi = 1 + i∆x for i = 1, . . . , n, and compute the right Riemann sum:

ln(2) ≈ 1
1.01(0.01) + 1

1.02(0.01) + · · ·+ 1
1.99(0.01) + 1

2.00(0.01) ≈ 0.691 ,

which is accurate to two decimal places. The Midpoint Method, which samples midpoints
xi = 1 + i∆x− ∆x

2 , gives five decimal places without more computation:

ln(2) ≈ 1
1.005(0.01) + 1

1.015(0.01) + · · ·+ 1
1.985(0.01) + 1

1.995(0.01) ≈ 0.693144 .

example: Compute
∫ b
a

ln(x)
x dx. Although there does not appear to be any outside or

inside function, we see that ln(x)
x = ln(x)· 1x = ln(x)·ln′(x), so we can use the substitution

u = ln(x), du = 1
x dx:∫

ln(x)
1

x
dx =

∫
u du = 1

2u
2 = 1

2 ln2(x) .

Thus,
∫ b
a

ln(x)
x dx = 1

2 ln2(b)− 1
2 ln2(a).



example: A tricky integral:
∫

sec(x) dx. There seems to be no convenient substitution,
but an amazing trick introduces sec2(x) = tan′(x) and sec(x) tan(x) = sec′(x):∫

sec(x) dx =

∫
sec(x) sec(x)+tan(x)

sec(x)+tan(x) dx =

∫
1

sec(x)+tan(x) ·
(
sec2(x) + sec(x) tan(x)

)
dx

This is perfect to substitute u = sec(x) + tan(x), du =
(
sec2(x) + sec(x) tan(x)

)
dx:∫

1

sec(x)+ tan(x)

(
sec2(x)+ sec(x) tan(x)

)
dx =

∫
1

u
du = ln|u| = ln|sec(x)+ tan(x)|.

example: Time flies.§ Suppose that the subjective length of each day is equal to the
fraction of your past life it represents. Thus, when you are 1 year old, an extra day feels
like 1

365 of a year; but when you are 2 years old, it only feels like 1
2·365 of a year; and

after t years, it feels like 1
t·365 . Adding up the subjective lengths of all the days from

t = 1 to x years, denoting ∆t = 1
365 :

s(x) ≈ 1
1∆t + 1

1+∆t∆t + 1
1+2∆t∆t + 1

1+3∆t∆t + · · ·+ 1
x∆t.

But this is just a Riemann sum for s(x) =
∫ x

1
1
t dt = log(x). This means your subjective

years increase logarithmically, and the time from age 2 to age 2e ≈ 5.2 feels the same as
from age 10 to age 10e ≈ 27. Seems true to me!

Proofs. To formally prove the basic facts about exponentials and logarithms, we start from the one
connection between these transcendental functions and an elementary function: ln′(x) = 1

x
.

We now forget everything we previously stated about exponentials and logarithms, and build up our
definitions from scratch, proving all properties.

Definition. For a given x > 0, we let: ln(x) =
∫ x

1
1
t
dt.

That is, having forgotten our previous definition of ln(x), we take the symbol ln(x) to mean the given
integral, which we can compute to arbitrary accuracy with Riemann sums. Given this, the First Funda-
mental Theorem (§4.3) immediately proves ln′(x) = 1

x
. Next:

Theorem: (a) ln(x1x2) = ln(x1) + ln(x2); (b) ln(xp) = p ln(x).

Proof. (a) For a constant k > 0, the derivative of ln(kx) is: ln(kx)′ = ln′(kx) · k = 1
kx
· k = 1

x
= ln′(x).

Since ln(kx) and ln(x) are both antiderivatives of 1
x

, we must have ln(kx) = ln(x) +C for some constant
(§3.9 Antiderivative Theorem). Setting x = 1, we get ln(k) = ln(1) + C = C, i.e. C = ln(k). Thus,
ln(kx) = ln(x) + ln(k) = ln(k) + ln(x), which becomes the desired formula if we let k = x1 and x = x2.

(b) We use the same steps, starting from ln(xp)′= 1
xp pxp−1 = p

x
= (p ln(x))′.

Definition: The function f(x) = ln(x) is one-to-one for x> 0, so it has an inverse function
f−1(x) = ln−1(x). We name this inverse exp(x) = ln−1(x).

Indeed, since ln′(x) = 1
x

> 0 for all x > 0, we know that ln(x) is increasing, i.e. x1 < x2 guarantees
ln(x1) < ln(x2); thus ln(x) is necessarily one-to-one. The Inverse Theorem (§6.1) immediately proves
exp(ln(x)) = x and ln(exp(x)) = x.

Theorem: exp′(x) = exp(x)

Proof. As in the Inverse Derivative Theorem (§6.1), differentiating x = ln(exp(x)) gives:

1 = [ln(exp(x))]′ = ln′(exp(x)) · exp′(x) =
1

exp(x)
exp′(x) =⇒ exp′(x) = exp(x).

We define the number e = exp(1), i.e. the unique number such that
∫ e

1
1
t
dt = 1; and the general

exponential function ax = exp(ln(a)x), so that ex = exp(x). The Chain Rule gives (ax)′ = exp(ln(a)x) ·
ln(a) = ln(a) ax. Finally, we have the exponential addition formula:

ex1ex2 = exp(ln(ex1ex2)) = exp(ln(ex1) + ln(ex2)) = ex1+x2 .

Also the exponential multiplication formula: (ex)p = exp(ln(ex)p) = exp(xp) = exp.

§Time flies like an arrow. Fruit flies like a banana.


