Review of exponential and logarithm functions. We recall some facts from algebra, which we will later prove from a calculus point of view. In an expression of the form a^{p}, the number a is called the base and the power p is the exponent. An exponential function* is of the form $f(x)=a^{x}$. It is defined for rational $x=\frac{m}{n}$ by $a^{m / n}=\sqrt[n]{a \cdots a}$ (m factors), $a^{-x}=1 / a^{x}, a^{0}=1$; but this is harder to define for irrational exponents like $a^{\sqrt{2}}$. We have addition and multiplication formulas: $a^{x_{1}} a^{x_{2}}=a^{x_{1}+x_{2}}$ and $\left(a^{x}\right)^{p}=a^{p x}$. Given the exponential function $f(x)=a^{x}$, the logarithm function is the inverse $f^{-1}(x)=\log _{a}(x)$, as defined in §6.1. ${ }^{\dagger}$

That is, the equation $y=a^{x}$ is by definition solved as $x=\log _{a}(y)$, and we have $\log _{a}\left(a^{x}\right)=x$ and $a^{\log _{a}(y)}=y$. Every fact about the exponential function corresponds to an inverse fact about the logarithm. Setting $y_{1}=a^{x_{1}}, x_{1}=\log \left(y_{1}\right)$; and $y_{2}=a^{x_{2}}$, $x_{2}=\log \left(y_{2}\right)$; the addition formula becomes:

$$
\begin{aligned}
a^{x_{1}} a^{x_{2}}=a^{x_{1}+x_{2}} & \Longrightarrow y_{1} y_{2}=a^{\log \left(y_{1}\right)+\log \left(y_{2}\right)} \\
& \Longrightarrow \log \left(y_{1} y_{2}\right)=\log \left(y_{1}\right)+\log \left(y_{2}\right)
\end{aligned}
$$

Setting $y=a^{x}, x=\log (y)$, the multiplication formula becomes:

$$
\begin{aligned}
\left(a^{x}\right)^{p}=a^{p x} & \Longrightarrow y^{p}=a^{p \log (y)} \\
& \Longrightarrow \log \left(y^{p}\right)=p \log (y)
\end{aligned}
$$

EXAMPLE: Expand the expression $\log \sqrt{\frac{x+1}{x-1}}$ as much as possible into a sum of simple terms. Using the addition and multiplication formulas:

$$
\begin{aligned}
\log \sqrt{\frac{x+1}{x-1}} & =\log \left((x+1)(x-1)^{-1}\right)^{1 / 2} \\
& =\frac{1}{2}(\log (x+1)+(-1) \log (x-1)) \\
& =\frac{1}{2} \log (x+1)-\frac{1}{2} \log (x-1)
\end{aligned}
$$

[^0]Natural exponential and logarithm. In the physical world, an exponential function $f(t)=a^{t}$ typically appears as the size of a population which is self-reproducing. This means the population growth rate, the number of births per unit time, is proportional to the current population size:

$$
f^{\prime}(t)=c f(t) .
$$

It is a fact (proven below) that any exponential function $f(t)=a^{t}$ satisfies this equation for some constant $c . \ddagger$

The natural exponential function uses the unique choice of base $a=e=2.718 \ldots$ which makes the above constant $c=1$. That is, if we write $f(x)=\exp (x)=e^{x}$, then:

$$
f^{\prime}(x)=f(x), \quad \exp ^{\prime}(x)=\exp (x), \quad\left(e^{x}\right)^{\prime}=e^{x}
$$

The natural logarithm is the inverse function of $f(x)=\exp (x)$, namely $f^{-1}(x)=\ln (x)=$ $\log _{e}(x)$, so $y=e^{x}$ means $x=\ln (y)$. As in $\S 6.1$, to find the derivative of $\ln (x)$, we differentiate $x=\exp (\ln (x))$:

$$
1=\exp ^{\prime}(\ln (x)) \cdot \ln ^{\prime}(x)=\exp (\ln (x)) \ln ^{\prime}(x)=x \ln ^{\prime}(x) \quad \Longrightarrow \quad \ln ^{\prime}(x)=\frac{1}{x}
$$

Amazingly, though the definition of $\ln (x)$ was complicated, its derivative is the extremely simple function $\frac{1}{x}$.
EXAMPLE: Find the derivative of $f(x)=\ln \left(x^{2}+1\right)$. Taking outside function $\ln (x)$ with $\ln ^{\prime}(x)=\frac{1}{x}$, and inside function $x^{2}+1$, the Chain Rule gives:

$$
f^{\prime}(x)=\ln ^{\prime}\left(x^{2}+1\right) \cdot\left(x^{2}+1\right)^{\prime}=\frac{1}{x^{2}+1} \cdot(2 x)=\frac{2 x}{x^{2}+1} .
$$

example: Find the derivative of $f(x)=\ln (\sin (x))$. From the Chain Rule;

$$
f^{\prime}(x)=\ln ^{\prime}(\sin (x)) \cdot \sin ^{\prime}(x)=\frac{1}{\sin (x)} \cdot \cos (x)=\cot (x)
$$

EXAMPLE: Find the derivative of $f(x)=\frac{(x+1)^{3} \sin ^{2}(x)}{(2 x+1)^{5}}$ using the shortcut of logarithmic differentiation, Take \log of both sides, turning products into sums, then differentiate:

$$
\begin{aligned}
\ln f(x) & =3 \ln (x+1)+2 \ln (\sin (x))-5 \ln (2 x+1) \\
(\ln f(x))^{\prime} & =3 \ln (x+1)^{\prime}+2 \ln (\sin (x))^{\prime}-5 \ln (2 x+1)^{\prime} \\
\frac{1}{f(x)} f^{\prime}(x) & =3 \frac{1}{x+1}+2 \frac{1}{\sin (x)} \cos (x)-5 \frac{1}{2 x+1}(2) \\
f^{\prime}(x) & =\frac{(x+1)^{3} \sin ^{2}(x)}{(2 x+1)^{5}}\left(\frac{3}{x+1}+2 \cot (x)-\frac{10}{2 x+1}\right) .
\end{aligned}
$$

Logarithms and integrals. Reversing our new basic derivative $\ln ^{\prime}(x)=\frac{1}{x}$, we see $\int \frac{1}{x} d x=\ln (x)+C$, the antiderivative of $\frac{1}{x}=x^{-1}$, a key function which we previously

[^1]could not integrate. (The usual power function formula would give the nonsense answer $\int x^{-1} d x \stackrel{? ?}{=} \frac{1}{-1+1} x^{-1+1}=\frac{1}{0} x^{0}$.) Thus the Second Fundamental Theorem of Calculus (§4.3) tells us, for $a, b>0$:
$$
\int_{a}^{b} \frac{1}{x} d x=[\ln (x)]_{x=a}^{x=b}=\ln (b)-\ln (a) .
$$

To extend to negative x, we use:

$$
\int \frac{1}{x} d x=\ln |x|+C \quad \Longrightarrow \quad \int_{a}^{b} \frac{1}{x} d x=\ln |b|-\ln |a| \quad \text { for } a, b<0
$$

Geometrically, $\ln (x)=\int_{1}^{x} \frac{1}{t} d t$ is the area under $y=\frac{1}{x}$ and above the interval $[1, x]$.

Calculators and computers need an approximation algorithm to compute values of $\ln (x)$ more efficiently than just guessing solutions of $e^{y}=x$. The integral above allows us to approximate a natural logarithm as a Riemann sum. For example, to compute

$$
\ln (2)=0.693147 \cdots,
$$

split the interval $[1,2]$ into $n=100$ increments of size $\Delta x=\frac{2-1}{n}=0.01$, take sample points $x_{i}=1+i \Delta x$ for $i=1, \ldots, n$, and compute the right Riemann sum:

$$
\ln (2) \approx \frac{1}{1.01}(0.01)+\frac{1}{1.02}(0.01)+\cdots+\frac{1}{1.99}(0.01)+\frac{1}{2.00}(0.01) \approx \underline{0.691}
$$

which is accurate to two decimal places. The Midpoint Method, which samples midpoints $x_{i}=1+i \Delta x-\frac{\Delta x}{2}$, gives five decimal places without more computation:

$$
\ln (2) \approx \frac{1}{1.005}(0.01)+\frac{1}{1.015}(0.01)+\cdots+\frac{1}{1.985}(0.01)+\frac{1}{1.995}(0.01) \approx \underline{0.693144}
$$

example: Compute $\int_{a}^{b} \frac{\ln (x)}{x} d x$. Although there does not appear to be any outside or inside function, we see that $\frac{\ln (x)}{x}=\ln (x) \cdot \frac{1}{x}=\ln (x) \cdot \ln ^{\prime}(x)$, so we can use the substitution $u=\ln (x), d u=\frac{1}{x} d x$:

$$
\int \ln (x) \frac{1}{x} d x=\int u d u=\frac{1}{2} u^{2}=\frac{1}{2} \ln ^{2}(x) .
$$

Thus, $\int_{a}^{b} \frac{\ln (x)}{x} d x=\frac{1}{2} \ln ^{2}(b)-\frac{1}{2} \ln ^{2}(a)$.

EXAMPLE: A tricky integral: $\int \sec (x) d x$. There seems to be no convenient substitution, but an amazing trick introduces $\sec ^{2}(x)=\tan ^{\prime}(x)$ and $\sec (x) \tan (x)=\sec ^{\prime}(x)$:

$$
\int \sec (x) d x=\int \sec (x) \frac{\sec (x)+\tan (x)}{\sec (x)+\tan (x)} d x=\int \frac{1}{\sec (x)+\tan (x)} \cdot\left(\sec ^{2}(x)+\sec (x) \tan (x)\right) d x
$$

This is perfect to substitute $u=\sec (x)+\tan (x), d u=\left(\sec ^{2}(x)+\sec (x) \tan (x)\right) d x$:
$\int \frac{1}{\sec (x)+\tan (x)}\left(\sec ^{2}(x)+\sec (x) \tan (x)\right) d x=\int \frac{1}{u} d u=\ln |u|=\ln |\sec (x)+\tan (x)|$.
EXAMPLE: Time flies. ${ }^{\S}$ Suppose that the subjective length of each day is equal to the fraction of your past life it represents. Thus, when you are 1 year old, an extra day feels like $\frac{1}{365}$ of a year; but when you are 2 years old, it only feels like $\frac{1}{2 \cdot 365}$ of a year; and after t years, it feels like $\frac{1}{t \cdot 365}$. Adding up the subjective lengths of all the days from $t=1$ to x years, denoting $\Delta t=\frac{1}{365}$:

$$
s(x) \approx \frac{1}{1} \Delta t+\frac{1}{1+\Delta t} \Delta t+\frac{1}{1+2 \Delta t} \Delta t+\frac{1}{1+3 \Delta t} \Delta t+\cdots+\frac{1}{x} \Delta t
$$

But this is just a Riemann sum for $s(x)=\int_{1}^{x} \frac{1}{t} d t=\log (x)$. This means your subjective years increase logarithmically, and the time from age 2 to age $2 e \approx 5.2$ feels the same as from age 10 to age $10 e \approx 27$. Seems true to me!

Proofs. To formally prove the basic facts about exponentials and logarithms, we start from the one connection between these transcendental functions and an elementary function: $\ln ^{\prime}(x)=\frac{1}{x}$.

We now forget everything we previously stated about exponentials and logarithms, and build up our definitions from scratch, proving all properties.

Definition. For a given $x>0$, we let: $\ln (x)=\int_{1}^{x} \frac{1}{t} d t$.
That is, having forgotten our previous definition of $\ln (x)$, we take the symbol $\ln (x)$ to mean the given integral, which we can compute to arbitrary accuracy with Riemann sums. Given this, the First Fundamental Theorem (§4.3) immediately proves $\ln ^{\prime}(x)=\frac{1}{x}$. Next:

$$
\text { Theorem: (a) } \ln \left(x_{1} x_{2}\right)=\ln \left(x_{1}\right)+\ln \left(x_{2}\right) ; \quad \text { (b) } \ln \left(x^{p}\right)=p \ln (x) \text {. }
$$

Proof. (a) For a constant $k>0$, the derivative of $\ln (k x)$ is: $\ln (k x)^{\prime}=\ln ^{\prime}(k x) \cdot k=\frac{1}{k x} \cdot k=\frac{1}{x}=\ln ^{\prime}(x)$. Since $\ln (k x)$ and $\ln (x)$ are both antiderivatives of $\frac{1}{x}$, we must have $\ln (k x)=\ln (x)+C$ for some constant (§3.9 Antiderivative Theorem). Setting $x=1$, we get $\ln (k)=\ln (1)+C=C$, i.e. $C=\ln (k)$. Thus, $\ln (k x)=\ln (x)+\ln (k)=\ln (k)+\ln (x)$, which becomes the desired formula if we let $k=x_{1}$ and $x=x_{2}$. (b) We use the same steps, starting from $\ln \left(x^{p}\right)^{\prime}=\frac{1}{x^{p}} p x^{p-1}=\frac{p}{x}=(p \ln (x))^{\prime}$.

Definition: The function $f(x)=\ln (x)$ is one-to-one for $x>0$, so it has an inverse function $f^{-1}(x)=\ln ^{-1}(x)$. We name this inverse $\exp (x)=\ln ^{-1}(x)$.
Indeed, since $\ln ^{\prime}(x)=\frac{1}{x}>0$ for all $x>0$, we know that $\ln (x)$ is increasing, i.e. $x_{1}<x_{2}$ guarantees $\ln \left(x_{1}\right)<\ln \left(x_{2}\right)$; thus $\ln (x)$ is necessarily one-to-one. The Inverse Theorem ($\left.\S 6.1\right)$ immediately proves $\exp (\ln (x))=x$ and $\ln (\exp (x))=x$.

Theorem: $\exp ^{\prime}(x)=\exp (x)$
Proof. As in the Inverse Derivative Theorem (§6.1), differentiating $x=\ln (\exp (x))$ gives:

$$
1=[\ln (\exp (x))]^{\prime}=\ln ^{\prime}(\exp (x)) \cdot \exp ^{\prime}(x)=\frac{1}{\exp (x)} \exp ^{\prime}(x) \quad \Longrightarrow \quad \exp ^{\prime}(x)=\exp (x)
$$

We define the number $e=\exp (1)$, i.e. the unique number such that $\int_{1}^{e} \frac{1}{t} d t=1$; and the general exponential function $a^{x}=\exp (\ln (a) x)$, so that $e^{x}=\exp (x)$. The Chain Rule gives $\left(a^{x}\right)^{\prime}=\exp (\ln (a) x)$. $\ln (a)=\ln (a) a^{x}$. Finally, we have the exponential addition formula:

$$
e^{x_{1}} e^{x_{2}}=\exp \left(\ln \left(e^{x_{1}} e^{x_{2}}\right)\right)=\exp \left(\ln \left(e^{x_{1}}\right)+\ln \left(e^{x_{2}}\right)\right)=e^{x_{1}+x_{2}}
$$

Also the exponential multiplication formula: $\left(e^{x}\right)^{p}=\exp \left(\ln \left(e^{x}\right) p\right)=\exp (x p)=e^{x p}$.

[^2]
[^0]: Notes by Peter Magyar magyar@math.msu. edu
 *Do not confuse this with a power function of the form $f(x)=x^{p}$
 ${ }^{\dagger}$ If the base a is understood, we write simply $\log (x)$. In science and engineering literature, if there is no base specified, we assume the base $a=10$.

[^1]: ${ }^{\ddagger}$ Mathematical laws in science are typically stated in such differential equations, in which an unknown function $f(t)$ has a specified relation with its rate of change $f^{\prime}(t)$, its acceleration $f^{\prime \prime}(t)$, etc. For example, Newton's law of universal gravitation is essentially $f^{\prime \prime}(t)=-c / f(t)^{2}$.

[^2]: ${ }^{\text {§ }}$ Time flies like an arrow. Fruit flies like a banana.

