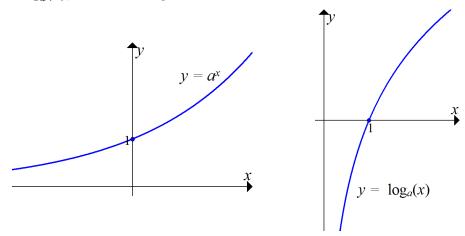
Review of exponential and logarithm functions. We recall some facts from algebra, which we will later prove from a calculus point of view. In an expression of the form a^p , the number a is called the *base* and the power p is the *exponent*. An *exponential* function* is of the form $f(x) = a^x$. It is defined for rational $x = \frac{m}{n}$ by $a^{m/n} = \sqrt[n]{a \cdots a}$ (m factors), $a^{-x} = 1/a^x$, $a^0 = 1$; but this is harder to define for irrational exponents like $a^{\sqrt{2}}$. We have addition and multiplication formulas: $a^{x_1}a^{x_2} = a^{x_1+x_2}$ and $(a^x)^p = a^{px}$.

Given the exponential function $f(x) = a^x$, the logarithm function is the inverse $f^{-1}(x) = \log_a(x)$, as defined in §6.1.[†]



That is, the equation $y=a^x$ is by definition solved as $x=\log_a(y)$, and we have $\log_a(a^x)=x$ and $a^{\log_a(y)}=y$. Every fact about the exponential function corresponds to an inverse fact about the logarithm. Setting $y_1=a^{x_1}$, $x_1=\log(y_1)$; and $y_2=a^{x_2}$, $x_2=\log(y_2)$; the addition formula becomes:

$$a^{x_1}a^{x_2} = a^{x_1+x_2} \implies y_1y_2 = a^{\log(y_1) + \log(y_2)}$$

 $\implies \log(y_1y_2) = \log(y_1) + \log(y_2).$

Setting $y = a^x$, $x = \log(y)$, the multiplication formula becomes:

$$(a^x)^p = a^{px} \implies y^p = a^{p \log(y)}$$

 $\implies \log(y^p) = p \log(y).$

EXAMPLE: Expand the expression $\log \sqrt{\frac{x+1}{x-1}}$ as much as possible into a sum of simple terms. Using the addition and multiplication formulas:

$$\log \sqrt{\frac{x+1}{x-1}} = \log ((x+1)(x-1)^{-1})^{1/2}$$

$$= \frac{1}{2}(\log(x+1) + (-1)\log(x-1))$$

$$= \frac{1}{2}\log(x+1) - \frac{1}{2}\log(x-1).$$

Notes by Peter Magyar magyar@math.msu.edu

^{*}Do not confuse this with a power function of the form $f(x) = x^p$

[†]If the base a is understood, we write simply $\log(x)$. In science and engineering literature, if there is no base specified, we assume the base a = 10.

Natural exponential and logarithm. In the physical world, an exponential function $f(t) = a^t$ typically appears as the size of a population which is self-reproducing. This means the population growth rate, the number of births per unit time, is proportional to the current population size:

$$f'(t) = c f(t).$$

It is a fact (proven below) that any exponential function $f(t) = a^t$ satisfies this equation for some constant c.[‡]

The natural exponential function uses the unique choice of base $a = e = 2.718 \cdots$ which makes the above constant c = 1. That is, if we write $f(x) = \exp(x) = e^x$, then:

$$f'(x) = f(x), \quad \exp'(x) = \exp(x), \quad (e^x)' = e^x.$$

The natural logarithm is the inverse function of $f(x) = \exp(x)$, namely $f^{-1}(x) = \ln(x) = \log_e(x)$, so $y = e^x$ means $x = \ln(y)$. As in §6.1, to find the derivative of $\ln(x)$, we differentiate $x = \exp(\ln(x))$:

$$1 = \exp'(\ln(x)) \cdot \ln'(x) = \exp(\ln(x)) \ln'(x) = x \ln'(x) \implies \ln'(x) = \frac{1}{x}.$$

Amazingly, though the definition of $\ln(x)$ was complicated, its derivative is the extremely simple function $\frac{1}{x}$.

EXAMPLE: Find the derivative of $f(x) = \ln(x^2+1)$. Taking outside function $\ln(x)$ with $\ln'(x) = \frac{1}{x}$, and inside function x^2+1 , the Chain Rule gives:

$$f'(x) = \ln'(x^2+1) \cdot (x^2+1)' = \frac{1}{x^2+1} \cdot (2x) = \frac{2x}{x^2+1}$$

EXAMPLE: Find the derivative of $f(x) = \ln(\sin(x))$. From the Chain Rule;

$$f'(x) = \ln'(\sin(x)) \cdot \sin'(x) = \frac{1}{\sin(x)} \cdot \cos(x) = \cot(x).$$

EXAMPLE: Find the derivative of $f(x) = \frac{(x+1)^3 \sin^2(x)}{(2x+1)^5}$ using the shortcut of logarithmic differentiation, Take log of both sides, turning products into sums, then differentiate:

$$\ln f(x) = 3\ln(x+1) + 2\ln(\sin(x)) - 5\ln(2x+1)$$

$$(\ln f(x))' = 3\ln(x+1)' + 2\ln(\sin(x))' - 5\ln(2x+1)'$$

$$\frac{1}{f(x)}f'(x) = 3\frac{1}{x+1} + 2\frac{1}{\sin(x)}\cos(x) - 5\frac{1}{2x+1}(2)$$

$$f'(x) = \frac{(x+1)^3\sin^2(x)}{(2x+1)^5} \left(\frac{3}{x+1} + 2\cot(x) - \frac{10}{2x+1}\right).$$

Logarithms and integrals. Reversing our new basic derivative $\ln'(x) = \frac{1}{x}$, we see $\int \frac{1}{x} dx = \ln(x) + C$, the antiderivative of $\frac{1}{x} = x^{-1}$, a key function which we previously

[†]Mathematical laws in science are typically stated in such differential equations, in which an unknown function f(t) has a specified relation with its rate of change f'(t), its acceleration f''(t), etc. For example, Newton's law of universal gravitation is essentially $f''(t) = -c/f(t)^2$.

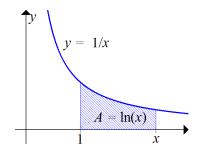
could not integrate. (The usual power function formula would give the nonsense answer $\int x^{-1} dx \stackrel{??}{=} \frac{1}{-1+1} x^{-1+1} = \frac{1}{0} x^0$.) Thus the Second Fundamental Theorem of Calculus (§4.3) tells us, for a, b > 0:

$$\int_{a}^{b} \frac{1}{x} dx = \left[\ln(x) \right]_{x=a}^{x=b} = \ln(b) - \ln(a).$$

To extend to negative x, we use:

$$\int \frac{1}{x} dx = \ln|x| + C \implies \int_a^b \frac{1}{x} dx = \ln|b| - \ln|a| \quad \text{for } a, b < 0.$$

Geometrically, $\ln(x) = \int_1^x \frac{1}{t} dt$ is the area under $y = \frac{1}{x}$ and above the interval [1, x].



Calculators and computers need an approximation algorithm to compute values of $\ln(x)$ more efficiently than just guessing solutions of $e^y = x$. The integral above allows us to approximate a natural logarithm as a Riemann sum. For example, to compute

$$ln(2) = 0.693147 \cdots$$

split the interval [1,2] into n=100 increments of size $\Delta x=\frac{2-1}{n}=0.01$, take sample points $x_i=1+i\Delta x$ for $i=1,\ldots,n$, and compute the right Riemann sum:

$$\ln(2) \approx \frac{1}{1.01}(0.01) + \frac{1}{1.02}(0.01) + \dots + \frac{1}{1.99}(0.01) + \frac{1}{2.00}(0.01) \approx \underline{0.69}1$$

which is accurate to two decimal places. The Midpoint Method, which samples midpoints $x_i = 1 + i\Delta x - \frac{\Delta x}{2}$, gives five decimal places without more computation:

$$\ln(2) \approx \frac{1}{1.005}(0.01) + \frac{1}{1.015}(0.01) + \dots + \frac{1}{1.985}(0.01) + \frac{1}{1.995}(0.01) \approx 0.693144$$

EXAMPLE: Compute $\int_a^b \frac{\ln(x)}{x} dx$. Although there does not appear to be any outside or inside function, we see that $\frac{\ln(x)}{x} = \ln(x) \cdot \frac{1}{x} = \ln(x) \cdot \ln'(x)$, so we can use the substitution $u = \ln(x)$, $du = \frac{1}{x} dx$:

$$\int \ln(x) \frac{1}{x} dx = \int u du = \frac{1}{2} u^2 = \frac{1}{2} \ln^2(x).$$

Thus, $\int_a^b \frac{\ln(x)}{x} dx = \frac{1}{2} \ln^2(b) - \frac{1}{2} \ln^2(a)$.

EXAMPLE: A tricky integral: $\int \sec(x) dx$. There seems to be no convenient substitution, but an amazing trick introduces $\sec^2(x) = \tan'(x)$ and $\sec(x) \tan(x) = \sec'(x)$:

$$\int \sec(x) \, dx = \int \sec(x) \, \frac{\sec(x) + \tan(x)}{\sec(x) + \tan(x)} \, dx = \int \frac{1}{\sec(x) + \tan(x)} \cdot \left(\sec^2(x) + \sec(x) \tan(x)\right) \, dx$$

This is perfect to substitute $u = \sec(x) + \tan(x)$, $du = (\sec^2(x) + \sec(x)\tan(x)) dx$:

$$\int \frac{1}{\sec(x) + \tan(x)} \left(\sec^2(x) + \sec(x) \tan(x) \right) dx = \int \frac{1}{u} du = \ln|u| = \ln|\sec(x) + \tan(x)|.$$

EXAMPLE: Time flies.§ Suppose that the subjective length of each day is equal to the fraction of your past life it represents. Thus, when you are 1 year old, an extra day feels like $\frac{1}{365}$ of a year; but when you are 2 years old, it only feels like $\frac{1}{2\cdot365}$ of a year; and after t years, it feels like $\frac{1}{t\cdot365}$. Adding up the subjective lengths of all the days from t=1 to x years, denoting $\Delta t = \frac{1}{365}$:

$$s(x) \approx \frac{1}{1}\Delta t + \frac{1}{1+\Delta t}\Delta t + \frac{1}{1+2\Delta t}\Delta t + \frac{1}{1+3\Delta t}\Delta t + \dots + \frac{1}{x}\Delta t.$$

But this is just a Riemann sum for $s(x) = \int_1^x \frac{1}{t} dt = \log(x)$. This means your subjective years increase logarithmically, and the time from age 2 to age $2e \approx 5.2$ feels the same as from age 10 to age $10e \approx 27$. Seems true to me!

Proofs. To formally prove the basic facts about exponentials and logarithms, we start from the one connection between these transcendental functions and an elementary function: $\ln'(x) = \frac{1}{x}$.

We now forget everything we previously stated about exponentials and logarithms, and build up our definitions from scratch, proving all properties.

Definition. For a given x > 0, we let: $\ln(x) = \int_1^x \frac{1}{t} dt$.

That is, having forgotten our previous definition of $\ln(x)$, we take the symbol $\ln(x)$ to mean the given integral, which we can compute to arbitrary accuracy with Riemann sums. Given this, the First Fundamental Theorem (§4.3) immediately proves $\ln'(x) = \frac{1}{x}$. Next:

Theorem: (a) $\ln(x_1x_2) = \ln(x_1) + \ln(x_2)$; (b) $\ln(x^p) = p \ln(x)$.

Proof. (a) For a constant k > 0, the derivative of $\ln(kx)$ is: $\ln(kx)' = \ln'(kx) \cdot k = \frac{1}{kx} \cdot k = \frac{1}{x} = \ln'(x)$. Since $\ln(kx)$ and $\ln(x)$ are both antiderivatives of $\frac{1}{x}$, we must have $\ln(kx) = \ln(x) + C$ for some constant (§3.9 Antiderivative Theorem). Setting x = 1, we get $\ln(k) = \ln(1) + C = C$, i.e. $C = \ln(k)$. Thus, $\ln(kx) = \ln(x) + \ln(k) = \ln(k) + \ln(x)$, which becomes the desired formula if we let $k = x_1$ and $x = x_2$. (b) We use the same steps, starting from $\ln(x^p)' = \frac{1}{x^p} px^{p-1} = \frac{p}{x} = (p \ln(x))'$.

Definition: The function $f(x) = \ln(x)$ is one-to-one for x > 0, so it has an inverse function $f^{-1}(x) = \ln^{-1}(x)$. We name this inverse $\exp(x) = \ln^{-1}(x)$.

Indeed, since $\ln'(x) = \frac{1}{x} > 0$ for all x > 0, we know that $\ln(x)$ is increasing, i.e. $x_1 < x_2$ guarantees $\ln(x_1) < \ln(x_2)$; thus $\ln(x)$ is necessarily one-to-one. The Inverse Theorem (§6.1) immediately proves $\exp(\ln(x)) = x$ and $\ln(\exp(x)) = x$.

Theorem: $\exp'(x) = \exp(x)$

Proof. As in the Inverse Derivative Theorem (§6.1), differentiating $x = \ln(\exp(x))$ gives:

$$1 = [\ln(\exp(x))]' = \ln'(\exp(x)) \cdot \exp'(x) = \frac{1}{\exp(x)} \exp'(x) \qquad \Longrightarrow \qquad \exp'(x) = \exp(x).$$

We define the number $e = \exp(1)$, i.e. the unique number such that $\int_1^e \frac{1}{t} dt = 1$; and the general exponential function $a^x = \exp(\ln(a)x)$, so that $e^x = \exp(x)$. The Chain Rule gives $(a^x)' = \exp(\ln(a)x) \cdot \ln(a) = \ln(a) a^x$. Finally, we have the exponential addition formula:

$$e^{x_1}e^{x_2} = \exp(\ln(e^{x_1}e^{x_2})) = \exp(\ln(e^{x_1}) + \ln(e^{x_2})) = e^{x_1+x_2}.$$

Also the exponential multiplication formula: $(e^x)^p = \exp(\ln(e^x)p) = \exp(xp) = e^{xp}$.

[§]Time flies like an arrow. Fruit flies like a banana.