Math 133
Natural Exp and Log
Basic Properties. Here is pretty much all you need to know about the $\exp (x)$ and $\ln (x)$ functions.

- $\exp (x)=e^{x} \quad \ln (x)=\log _{e}(x)$
- $\quad e^{\ln (x)}=x \quad \ln \left(e^{x}\right)=x$
- $e^{0}=1 \quad e^{1}=e \approx 2.71 \quad \ln (1)=0 \quad \ln (e)=1$
- $\quad e^{x_{1}} e^{x_{2}}=e^{x_{1}+x_{2}} \quad\left(e^{x}\right)^{p}=e^{p x}$
- $\quad \ln \left(x_{1} x_{2}\right)=\ln \left(x_{1}\right)+\ln \left(x_{2}\right) \quad \ln \left(x^{p}\right)=p \ln (x)$
- $\left(e^{x}\right)^{\prime}=e^{x} \quad \int e^{x} d x=e^{x}+C \quad \ln ^{\prime}(x)=\frac{1}{x} \quad \int \frac{1}{x} d x=\ln |x|+C$

We give some tricky examples, applying the basic facts and the Chain Rule.
EXAMPLE: Solve for y in the equation: $\ln \left(y e^{x}\right)+1=2 x+\ln \left(y^{2}\right)$.
Strategy: Expand into a sum, move y 's to the left, all else to the right.

$$
\begin{gathered}
\ln (y)+\ln \left(e^{x}\right)+1=2 x+2 \ln (y) \\
\ln (y)-2 \ln (y)=2 x-x-1 \\
\ln (y)=1-x \\
y=e^{1-x} .
\end{gathered}
$$

EXAMPLE: Differentiate $f(x)=\sin \left(e^{\tan (x)}\right)$.
Strategy: Apply the Chain Rule with outer $=\sin (x)$, inner $=e^{\tan (x)}$.

$$
\begin{aligned}
\left(\sin \left(e^{\tan (x)}\right)\right)^{\prime} & =\sin ^{\prime}\left(e^{\tan (x)}\right) \cdot\left(e^{\tan (x)}\right)^{\prime} \\
& =\cos \left(e^{\tan (x)}\right) \cdot \exp ^{\prime}(\tan (x)) \cdot \tan ^{\prime}(x) \\
& =\cos \left(e^{\tan (x)}\right) \cdot e^{\tan (x)} \cdot \sec ^{2}(x)
\end{aligned}
$$

EXAMPLE: Differentiate $f(x)=\int_{2}^{e^{x}} \ln (t \sin (t)) d t$.
Strategy: Apply the Chain Rule with outer function $g(x)=\int_{2}^{x} \ln (t \sin (t)) d t$. The First Fundamental Theorem (§4.3) says* that $g^{\prime}(x)=\ln (x \sin (x))$. We are given a composition of functions $f(x)=g\left(e^{x}\right)$, so the Chain Rule applies:

$$
f^{\prime}(x)=g^{\prime}\left(e^{x}\right) \cdot\left(e^{x}\right)^{\prime}=\ln \left(e^{x} \sin \left(e^{x}\right)\right) \cdot e^{x}=x e^{x}+\ln \left(\sin \left(e^{x}\right)\right) e^{x} .
$$

[^0]EXAMPLE: Find $\frac{d y}{d x}$ by implicit differentiation, for (x, y) satisfying:

$$
e^{y}=\cos (x+y)
$$

Specifically, find $\frac{d y}{d x}$ at the point $(x, y)=(0,0)$.
Strategy: The equation defines some unknown curve containing the point $(x, y)=(0,0)$, since $e^{0}=\cos (0+0)$. We want the slope of the tangent line at that point. Assuming $y=y(x)$ is some function which satisfies the equation, we apply the Chain Rule to both sides, and solve for $y^{\prime}=\frac{d y}{d x}$.

$$
\begin{gathered}
\left(e^{y(x)}\right)^{\prime}=\cos (x+y(x))^{\prime} \\
\exp ^{\prime}(y(x)) \cdot y^{\prime}(x)=\cos ^{\prime}(x+y(x)) \cdot(x+y(x))^{\prime} \\
e^{y} \cdot y^{\prime}=-\sin (x+y) \cdot\left(1+y^{\prime}\right) \\
\left(e^{y}+\sin (x+y)\right) y^{\prime}=-\sin (x+y) \\
y^{\prime}=-\frac{\sin (x+y)}{e^{y}+\sin (x+y)}
\end{gathered}
$$

Substituting $(x, y)=(0,0)$ gives $y^{\prime}=\left.\frac{d y}{d x}\right|_{x=0}=-\frac{\sin (0+0)}{e^{0}+\sin (0+0)}=0$. That is, the unknown curve has a horizontal tangent at the origin.

EXAMPLE: Find the derivative of $f(x)=a^{x}$ for any base $a>0$.
Strategy: write a^{x} in terms of the natural exponential, whose derivative is known. Specifically, solving $a=e^{p}$ by $p=\ln (a)$, we get $a=e^{\ln (a)}$, and $a^{x}=\left(e^{\ln (a)}\right)^{x}=e^{\ln (a) x}$. Applying the Chain Rule:

$$
\begin{aligned}
\left(a^{x}\right)^{\prime} & =\left(e^{\ln (a) x}\right)^{\prime}=\exp ^{\prime}(\ln (a) x) \cdot(\ln (a) x)^{\prime} \\
& =e^{\ln (a) x} \cdot \ln (a)=\ln (a) a^{x}
\end{aligned}
$$

Note that $\ln (a)$ is a constant, so $(\ln (a) x)^{\prime}=\ln (a) .^{\dagger}$

[^1]
[^0]: Notes by Peter Magyar magyar@math.msu.edu
 *That is, in the plane with t and y axes, $g(x)$ is the area between the curve $y=$ $\ln (t \sin (t))$ and the interval $t \in[1, x]$. The rate of change of this area function, $g^{\prime}(x)$, equals the level of the curve at $t=x$, the moving end of the interval: $\ln (x \sin (x))$.

 Algebraically, the derivative of the integral of a function gives back the original function.

[^1]: ${ }^{\dagger}$ If we tried to apply the Product and Chain Rules, we would get:

 $$
 (\ln (a) x)^{\prime}=(\ln (a))^{\prime} \cdot x+\ln (a) \cdot(x)^{\prime}=\ln ^{\prime}(a) \cdot a^{\prime} \cdot x+\ln (a) \cdot 1=\frac{1}{a} \cdot 0 \cdot x+\ln (a)=\ln (a) .
 $$

