Derivative of general exp. To compute with functions of arbitrary base, we will repeatedly apply:

Natural Base Principle: To deal with general exponentials and logarithms in calculus, write them in terms of the natural base e functions e^{x} and $\ln (x)$, which have $\left(e^{x}\right)^{\prime}=e^{x}$ and $\ln ^{\prime}(x)=\frac{1}{x}$.
For example, we have $a=e^{\ln (a)}$, so:
$\left(a^{x}\right)^{\prime}=\left(e^{\ln (a) x}\right)^{\prime}=\exp ^{\prime}(\ln (a) x) \cdot(\ln (a) x)^{\prime}=e^{\ln (a) x} \cdot \ln (a)=\ln (a) a^{x}$.
Note that one factor is just our original function a^{x}, because differentiating the outside function e^{x} has no effect. In the other factor, $\ln (a)$ is a (complicated) constant, so $(\ln (a) x)^{\prime}=\ln (a)$.

Derivative of general log. Since $f(x)=a^{x}=e^{\ln (a) x}$, we can find the inverse function $f^{-1}(y)=\log _{a}(y)$ by solving $y=e^{\ln (a) x}$ to get: $\ln (y)=\ln (a) x$, and $x=\frac{\ln (y)}{\ln (a)}$. That is, $f^{-1}(y)=\log _{a}(y)=\frac{\ln (y)}{\ln (a)}$. Switching the input variable to x, we get the logarithm base change formula:

$$
\log _{a}(x)=\frac{\ln (x)}{\ln (a)}
$$

Hence:

$$
\log _{a}^{\prime}(x)=\left(\frac{\ln (x)}{\ln (a)}\right)^{\prime}=\frac{1}{\ln (a)} \ln ^{\prime}(x)=\frac{1}{\ln (a) x} .
$$

Problems.

EXAMPLE: Differentiate $f(x)=6^{x+\cos (x)}$. It is not helpful to factor: $f(x)=$ $6^{x} 6^{\cos (x)}$. Instead, we have $6=e^{\ln (6)}$, so:

$$
\begin{aligned}
f^{\prime}(x) & =\left(e^{\ln (6)(x+\cos (x))}\right)^{\prime} \\
& =\exp ^{\prime}\left(\ln (6)(x+\cos (x)) \cdot \ln (6)(x+\cos (x))^{\prime}\right. \\
& =e^{\ln (6)(x+\cos (x))} \cdot \ln (6)(1-\sin (x)) \\
& =6^{x+\cos (x)} \ln (6)(1-\sin (x))
\end{aligned}
$$

Notice that the original function is again a factor of the derivative, because the derivative of the outside exp is itself.

EXAMPLE: Differentiate $f(x)=x^{x}$. Since $x=e^{\ln (x)}$, we have:

$$
\begin{aligned}
f^{\prime}(x) & =\left(e^{\ln (x) x}\right)^{\prime} \\
& =\exp ^{\prime}(\ln (x) x) \cdot(\ln (x) x)^{\prime} \\
& =\exp ^{\prime}(\ln (x) x) \cdot\left(\ln ^{\prime}(x) x+\ln (x) x^{\prime}\right) \\
& =x^{x}(1+\ln (x))
\end{aligned}
$$

Once again, the original function is a factor of the derivative.
Another approach is the logarithmic derivative, based on the formula:

$$
\left(\ln (f(x))^{\prime}=\ln ^{\prime}(f(x)) f^{\prime}(x)=\frac{f^{\prime}(x)}{f(x)} \Longrightarrow f^{\prime}(x)=f(x)\left(\ln (f(x))^{\prime}\right.\right.
$$

For our function, $\ln (f(x))=\ln \left(x^{x}\right)=x \ln (x)$, and we quickly get the previous answer:

$$
f^{\prime}(x)=f(x)\left(\ln (f(x))^{\prime}=x^{x}(x \ln (x))^{\prime}=x^{x}(1+\ln (x))\right.
$$

EXAMPLE: Find the indefinite integral ${ }^{*} \int x 6^{x^{2}} d x$.
We write in terms of natural functions, and do the substitution $u=$ $\ln (6) x^{2}$:

$$
\begin{aligned}
\int x 6^{x^{2}} d x & =\int x e^{\ln (6) x^{2}} d x=\frac{1}{2 \ln (6)} \int e^{\ln (6) x^{2}} \ln (6) 2 x d x \\
& =\frac{1}{2 \ln (6)} \int e^{u} d u=\frac{e^{u}}{2 \ln (6)}=\frac{e^{\ln (6) x^{2}}}{2 \ln (6)}=\frac{6^{x^{2}}}{2 \ln (6)}
\end{aligned}
$$

[^0]
[^0]: *The notation $\int f(x) d x$, with no limits of integration, is simply a shorthand for the general antiderivative, and is called the indefinite integral. Indeed, if we find the indefinite integral $\int f(x) d x=F(x)+C$, where $F^{\prime}(x)=f(x)$, then we can evaluate the definite integral: $\int_{a}^{b} f(x) d x=[F(x)]_{x=a}^{x=b}$.

