Math 133 Inverse Trigonometric Functions Stewart §6.6

Inverses and domains. Consider a hot-air balloon 20 feet in the air, tethered by a rope stretching 50 feet diagonally to the ground. What is the rope's angle of elevation?

Because sine = opposite/hypotenuse, the angle of elevation θ has $\sin(\theta) = \frac{20}{50} = \frac{2}{5}$. To find θ , we need the inverse function: $\theta = \sin^{-1}(\frac{2}{5}) \approx 0.41$ rad $\approx 23.6^{\circ}$, using the inv sin or arcsin function on a calculator. However, the equation $\sin(\theta) = \frac{2}{5}$ has infinitely many solutions:

If the initial solution is θ_0 , there is another solution at $\theta_1 = \pi - \theta_0$, and in general at $\theta_0 + 2n\pi$, $\theta_1 + 2n\pi$ for any integer *n*. In our problem, we clearly want an acute angle, so we restrict $0 \le \theta \le \frac{\pi}{2}$, making $\theta = \theta_0$ the unique acceptable solution.

A bit more generally, we restrict $\sin(x)$ to the domain $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ to make it a one-to-one function (so different inputs go to different outputs, and the graph satisfies the horizontal line test). We get a pair of inverse functions:

$$\sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow [-1, 1], \qquad \qquad \sin^{-1}: \left[-1, 1\right] \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$

See the end of this section for graphs of inverse functions with standard domains.

An alternative notation is $\sin^{-1}(y) = \arcsin(y)$, meaning the arc (angle) whose sine is y.* Similarly $\tan^{-1}(y) = \arctan(y)$, etc. Watch out for an unfortunate ambiguity: $\sin^{-1}(x)$ could mean either $\arcsin(x)$, the inverse under composition of functions; or $\frac{1}{\sin(x)}$, the inverse under multiplication of functions. We will always write:

$$\sin^{-1}(x) = \arcsin(x), \qquad \sin(x)^{-1} = \frac{1}{\sin(x)} = \csc(x).$$

Notes by Peter Magyar magyar@math.msu.edu

^{*}Radian angle θ means the length of an arc on the unit circle: a full circle has circumference 2π rad.

Inverse functions and triangles. The Pythagorean relations between trig functions lead to relations among their inverses. Given $\theta = \sin^{-1}(y)$, i.e. $\sin(\theta) = y$, we set up the triangle at left below so that $\sin(\theta) = \text{opposite/hypotenuse} = y/1$.

At left, the adjacent side x satisfies $x^2 + y^2 = 1$, so $x = \sqrt{1 - y^2}$, and we can compute:

$$\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{1-y^2}}{1}$$

so $\cos(\sin^{-1}(y)) = \cos(\theta) = \sqrt{1 - y^2}$; similarly $\tan(\theta) = \tan(\sin^{-1}(y)) = \frac{y}{\sqrt{1 - y^2}}$, etc. In the picture at right, we have $\theta = \tan^{-1}(z)$ since $\tan(\theta) = \text{opposite/adjacent} = z/1$, and we compute $\cos(\tan^{-1}(z)) = \cos(\theta) = \frac{1}{\sqrt{1 + z^2}}$, etc.

$$\theta = \sin^{-1}(y) \qquad \qquad \theta = \tan^{-1}(z)$$

$$\sin(\theta) = y \qquad \qquad \tan(\theta) = z$$

$$\cos(\theta) = \sqrt{1 - y^2} \qquad \qquad \cos(\theta) = \frac{1}{\sqrt{1 + z^2}}$$

$$\tan(\theta) = \frac{y}{\sqrt{1 - y^2}} \qquad \qquad \sec(\theta) = \sqrt{1 + z^2}$$

Derivatives of Inverses. As in §6.1, we differentiate the defining formula $y = \sin(\sin^{-1}(y))$:

$$1 = [\sin(\sin^{-1}(y))]' = \cos(\sin^{-1}(y))(\sin^{-1})'(y),$$
$$(\sin^{-1})'(y) = \frac{1}{\cos(\sin^{-1}(y))} = \frac{1}{\cos(\theta)} = \frac{1}{\sqrt{1-y^2}},$$

where $\theta = \sin^{-1}(y)$, $\sin(\theta) = y$, $\cos(\theta) = \sqrt{1 - y^2}$. Similarly, we conclude:

$$(\sin^{-1})'(y) = \frac{1}{\sqrt{1-y^2}} \qquad (\cos^{-1})'(y) = -\frac{1}{\sqrt{1-y^2}}$$
$$(\tan^{-1})'(y) = \frac{1}{1+y^2} \qquad (\sec^{-1})'(y) = \frac{1}{y\sqrt{y^2-1}}.$$

Inverse functions and integrals. The above derivative formulas can be reversed to give antiderivatives (indefinite integrals). That is, $\int \frac{1}{\sqrt{1-y^2}} dy = \sin^{-1}(y) + C$, etc. EXAMPLE: Find $\int \frac{1}{\sqrt{2-x^2}} dx$. The trick is to rewrite the integrand in the form of one of our derivatives, whichever is closest, in this case $\frac{1}{\sqrt{1-y^2}}$.

$$\int \frac{1}{\sqrt{2 - x^2}} \, dx = \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1 - \frac{x^2}{2}}} \, dx = \int \frac{1}{\sqrt{1 - (\frac{x}{\sqrt{2}})^2}} \frac{1}{\sqrt{2}} \, dx \quad \left[\begin{array}{c} y = \frac{x}{\sqrt{2}} \\ dy = \frac{1}{\sqrt{2}} \, dx \end{array} \right]$$
$$= \int \frac{1}{\sqrt{1 - y^2}} \, dy = \sin^{-1}(y) + C = \sin^{-1}(\frac{x}{\sqrt{2}}) + C \, .$$

EXAMPLE: Find $\int \frac{1}{\sqrt{1+x-x^2}} dx$. Again, we want to force the integrand into the form $\frac{1}{\sqrt{1-y^2}}$. Since we have a three-term quadratic, we complete the square:[†]

$$x^{2} - x - 1 = x^{2} - 2\left(\frac{1}{2}\right)x + \left(\frac{1}{2}\right)^{2} - \left(\frac{1}{2}\right)^{2} - 1 = (x - \frac{1}{2})^{2} - \frac{5}{4},$$

$$1 + x - x^{2} = \frac{5}{4} - (x - \frac{1}{2})^{2} = \frac{5}{4}\left(1 - \frac{4}{5}\left(x - \frac{1}{2}\right)^{2}\right) = \frac{5}{4}\left(1 - \left(\frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}\right)^{2}\right).$$

Thus we take $y = \frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}$, $dy = \frac{2}{\sqrt{5}}dx$, and obtain the impressive integral:

$$\begin{aligned} \int \frac{1}{\sqrt{1+x-x^2}} \, dx \ &= \ \int \frac{1}{\sqrt{\frac{5}{4} \left(1 - \left(\frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}\right)^2\right)}} \, dx \ &= \ \int \frac{1}{\sqrt{1 - \left(\frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}\right)^2}} \, \frac{2}{\sqrt{5}} \, dx \\ &= \ \int \frac{1}{\sqrt{1-y^2}} \, dy \ &= \ \sin^{-1}(y) + C \ &= \ \sin^{-1}\left(\frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}\right) + C \,. \end{aligned}$$

Graphs of inverse functions

 ${}^{\dagger}x^2 + bx + c = x^2 + 2(\frac{b}{2})x + (\frac{b}{2})^2 - (\frac{b}{2})^2 + c = (x + \frac{b}{2})^2 + \frac{b^2 - 4c}{4}, \text{ leading to the Quadratic Formula.}$

The strange standard domain for $\sec(\theta)$ is $\theta \in [0, \frac{\pi}{2}) \cup [\pi, \frac{3\pi}{2})$, chosen to make signs work out in $(\sec^{-1})'(y) = \frac{1}{y\sqrt{y^2-1}}$. If we took $\theta \in [0, \pi]$, we would get $(\sec^{-1})'(y) = \frac{1}{|y|\sqrt{y^2-1}}$. To avoid this headache, we usually write $\int \frac{1}{y\sqrt{y^2-1}} dy = \tan^{-1}\sqrt{y^2-1}$, not $\sec^{-1}(y)$. Indeed, for $y \ge 1$ these are the same, $\tan^{-1}\sqrt{y^2-1} = \sec^{-1}(y)$; but for $y \le -1$ they differ by $+\pi$ (red curve). The function $\tan^{-1}\sqrt{y^2-1}$ is an even function, not an inverse, but it is unambiguously defined and has the correct derivative: $(\tan^{-1}\sqrt{y^2-1})' = \frac{1}{y\sqrt{y^2-1}}$.