
Math 133 Inverse Trigonometric Functions Stewart §6.6

Inverses and domains. Consider a hot-air balloon 20 feet in the air, tethered by a
rope stretching 50 feet diagonally to the ground. What is the rope’s angle of elevation?

Because sine = opposite/hypotenuse, the angle of elevation θ has sin(θ) = 20
50 = 2

5 . To
find θ, we need the inverse function: θ = sin−1(25) ≈ 0.41 rad ≈ 23.6◦, using the inv

sin or arcsin function on a calculator. However, the equation sin(θ) = 2
5 has infinitely

many solutions:

If the initial solution is θ0, there is another solution at θ1 = π − θ0, and in general at
θ0 + 2nπ, θ1 + 2nπ for any integer n. In our problem, we clearly want an acute angle,
so we restrict 0 ≤ θ ≤ π

2 , making θ = θ0 the unique acceptable solution.
A bit more generally, we restrict sin(x) to the domain −π

2 ≤ θ ≤ π
2 to make it a

one-to-one function (so different inputs go to different outputs, and the graph satisfies
the horizontal line test). We get a pair of inverse functions:

sin :
[
−π

2 ,
π
2

]
−→ [−1, 1], sin−1 : [−1, 1] −→

[
−π

2 ,
π
2

]
.

See the end of this section for graphs of inverse functions with standard domains.
An alternative notation is sin−1(y) = arcsin(y), meaning the arc (angle) whose sine

is y.∗ Similarly tan−1(y) = arctan(y), etc. Watch out for an unfortunate ambiguity:
sin−1(x) could mean either arcsin(x), the inverse under composition of functions; or

1
sin(x) , the inverse under multiplication of functions. We will always write:

sin−1(x) = arcsin(x), sin(x)−1 =
1

sin(x)
= csc(x) .

Notes by Peter Magyar magyar@math.msu.edu
∗Radian angle θ means the length of an arc on the unit circle: a full circle has circumference 2π rad.



Inverse functions and triangles. The Pythagorean relations between trig functions
lead to relations among their inverses. Given θ = sin−1(y), i.e. sin(θ) = y, we set up the
triangle at left below so that sin(θ) = opposite/hypotenuse = y/1.

At left, the adjacent side x satisfies x2 + y2 = 1, so x =
√

1− y2, and we can compute:

cos(θ) =
adjacent

hypotenuse
=

√
1− y2

1
,

so cos(sin−1(y)) = cos(θ) =
√

1− y2; similarly tan(θ) = tan(sin−1(y)) = y√
1−y2

, etc.

In the picture at right, we have θ = tan−1(z) since tan(θ) = opposite/adjacent =
z/1, and we compute cos(tan−1(z)) = cos(θ) = 1√

1+z2
, etc.

θ = sin−1(y) θ = tan−1(z)

sin(θ) = y tan(θ) = z

cos(θ) =
√

1− y2 cos(θ) = 1√
1+z2

tan(θ) = y√
1−y2

sec(θ) =
√

1 + z2

Derivatives of Inverses. As in §6.1, we differentiate the defining formula y = sin(sin−1(y)):

1 = [sin(sin−1(y))]′ = cos(sin−1(y)) (sin−1)′(y),

(sin−1)′(y) =
1

cos(sin−1(y))
=

1

cos(θ)
=

1√
1− y2

,

where θ = sin−1(y), sin(θ) = y, cos(θ) =
√

1− y2. Similarly, we conclude:

(sin−1)′(y) =
1√

1− y2
(cos−1)′(y) = − 1√

1− y2

(tan−1)′(y) =
1

1 + y2
(sec−1)′(y) =

1

y
√
y2 − 1

.



Inverse functions and integrals. The above derivative formulas can be reversed
to give antiderivatives (indefinite integrals). That is,

∫
1√
1−y2

dy = sin−1(y) + C, etc.

example: Find
∫

1√
2−x2 dx. The trick is to rewrite the integrand in the form of one of

our derivatives, whichever is closest, in this case 1√
1−y2

.

∫
1√

2− x2
dx =

∫
1√
2

1√
1− x2

2

dx =

∫
1√

1− ( x√
2
)2

1√
2
dx

[
y = x√

2

dy = 1√
2
dx

]

=

∫
1√

1− y2
dy = sin−1(y) + C = sin−1( x√

2
) + C .

example: Find
∫

1√
1+x−x2 dx. Again, we want to force the integrand into the form

1√
1−y2

. Since we have a three-term quadratic, we complete the square:†

x2 − x− 1 = x2 − 2(12)x+ (12)2 − (12)2 − 1 = (x−1
2)2 − 5

4 ,

1 + x− x2 = 5
4 − (x−1

2)2 = 5
4

(
1− 4

5

(
x−1

2

)2)
= 5

4

(
1−

(
2√
5
x− 1√

5

)2)
.

Thus we take y = 2√
5
x− 1√

5
, dy = 2√

5
dx, and obtain the impressive integral:∫

1√
1 + x− x2

dx =

∫
1√

5
4

(
1−

(
2√
5
x− 1√

5

)2) dx =

∫
1√

1−
(

2√
5
x− 1√

5

)2 2√
5
dx

=

∫
1√

1− y2
dy = sin−1(y) + C = sin−1

(
2√
5
x− 1√

5

)
+ C .

Graphs of inverse functions

† x2 + bx+ c = x2 +2( b
2
)x+( b

2
)2 − ( b

2
)2 + c = (x+ b

2
)2 + b2−4c

4
, leading to the Quadratic Formula.



The strange standard domain for sec(θ) is θ ∈ [0, π2 )∪ [π, 3π2 ), chosen to make signs work
out in (sec−1)′(y) = 1

y
√
y2−1

. If we took θ ∈ [0, π], we would get (sec−1)′(y) = 1

|y|
√
y2−1

.

To avoid this headache, we usually write
∫

1

y
√
y2−1

dy = tan−1
√
y2−1, not sec−1(y).

Indeed, for y ≥ 1 these are the same, tan−1
√
y2−1 = sec−1(y); but for y ≤ −1 they differ

by +π (red curve). The function tan−1
√
y2−1 is an even function, not an inverse, but

it is unambiguously defined and has the correct derivative: (tan−1
√
y2−1)′ = 1

y
√
y2−1

.


