Inverses and domains. Consider a hot-air balloon 20 feet in the air, tethered by a rope stretching 50 feet diagonally to the ground. What is the rope's angle of elevation?

Because sine $=$ opposite/hypotenuse, the angle of elevation θ has $\sin (\theta)=\frac{20}{50}=\frac{2}{5}$. To find θ, we need the inverse function: $\theta=\sin ^{-1}\left(\frac{2}{5}\right) \approx 0.41 \mathrm{rad} \approx 23.6^{\circ}$, using the inv \sin or \arcsin function on a calculator. However, the equation $\sin (\theta)=\frac{2}{5}$ has infinitely many solutions:

If the initial solution is θ_{0}, there is another solution at $\theta_{1}=\pi-\theta_{0}$, and in general at $\theta_{0}+2 n \pi, \theta_{1}+2 n \pi$ for any integer n. In our problem, we clearly want an acute angle, so we restrict $0 \leq \theta \leq \frac{\pi}{2}$, making $\theta=\theta_{0}$ the unique acceptable solution.

A bit more generally, we restrict $\sin (x)$ to the domain $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ to make it a one-to-one function (so different inputs go to different outputs, and the graph satisfies the horizontal line test). We get a pair of inverse functions:

$$
\sin :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow[-1,1], \quad \sin ^{-1}:[-1,1] \longrightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$$

See the end of this section for graphs of inverse functions with standard domains.
An alternative notation is $\sin ^{-1}(y)=\arcsin (y)$, meaning the arc (angle) whose sine is y.* Similarly $\tan ^{-1}(y)=\arctan (y)$, etc. Watch out for an unfortunate ambiguity: $\sin ^{-1}(x)$ could mean either $\arcsin (x)$, the inverse under composition of functions; or $\frac{1}{\sin (x)}$, the inverse under multiplication of functions. We will always write:

$$
\sin ^{-1}(x)=\arcsin (x), \quad \sin (x)^{-1}=\frac{1}{\sin (x)}=\csc (x) .
$$

[^0]Inverse functions and triangles. The Pythagorean relations between trig functions lead to relations among their inverses. Given $\theta=\sin ^{-1}(y)$, i.e. $\sin (\theta)=y$, we set up the triangle at left below so that $\sin (\theta)=$ opposite/hypotenuse $=y / 1$.

At left, the adjacent side x satisfies $x^{2}+y^{2}=1$, so $x=\sqrt{1-y^{2}}$, and we can compute:

$$
\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{\sqrt{1-y^{2}}}{1},
$$

so $\cos \left(\sin ^{-1}(y)\right)=\cos (\theta)=\sqrt{1-y^{2}} ;$ similarly $\tan (\theta)=\tan \left(\sin ^{-1}(y)\right)=\frac{y}{\sqrt{1-y^{2}}}$, etc.
In the picture at right, we have $\theta=\tan ^{-1}(z)$ since $\tan (\theta)=$ opposite/adjacent $=$ $z / 1$, and we compute $\cos \left(\tan ^{-1}(z)\right)=\cos (\theta)=\frac{1}{\sqrt{1+z^{2}}}$, etc.

$$
\begin{array}{cc}
\theta=\sin ^{-1}(y) & \theta=\tan ^{-1}(z) \\
\sin (\theta)=y & \tan (\theta)=z \\
\cos (\theta)=\sqrt{1-y^{2}} & \cos (\theta)=\frac{1}{\sqrt{1+z^{2}}} \\
\tan (\theta)=\frac{y}{\sqrt{1-y^{2}}} & \sec (\theta)=\sqrt{1+z^{2}}
\end{array}
$$

Derivatives of Inverses. As in §6.1, we differentiate the defining formula $y=\sin \left(\sin ^{-1}(y)\right)$:

$$
\begin{gathered}
1=\left[\sin \left(\sin ^{-1}(y)\right)\right]^{\prime}=\cos \left(\sin ^{-1}(y)\right)\left(\sin ^{-1}\right)^{\prime}(y) \\
\left(\sin ^{-1}\right)^{\prime}(y)=\frac{1}{\cos \left(\sin ^{-1}(y)\right)}=\frac{1}{\cos (\theta)}=\frac{1}{\sqrt{1-y^{2}}}
\end{gathered}
$$

where $\theta=\sin ^{-1}(y), \sin (\theta)=y, \cos (\theta)=\sqrt{1-y^{2}}$. Similarly, we conclude:

$$
\begin{aligned}
\left(\sin ^{-1}\right)^{\prime}(y)=\frac{1}{\sqrt{1-y^{2}}} & \left(\cos ^{-1}\right)^{\prime}(y)=-\frac{1}{\sqrt{1-y^{2}}} \\
\left(\tan ^{-1}\right)^{\prime}(y)=\frac{1}{1+y^{2}} & \left(\sec ^{-1}\right)^{\prime}(y)=\frac{1}{y \sqrt{y^{2}-1}}
\end{aligned}
$$

Inverse functions and integrals. The above derivative formulas can be reversed to give antiderivatives (indefinite integrals). That is, $\int \frac{1}{\sqrt{1-y^{2}}} d y=\sin ^{-1}(y)+C$, etc. example: Find $\int \frac{1}{\sqrt{2-x^{2}}} d x$. The trick is to rewrite the integrand in the form of one of our derivatives, whichever is closest, in this case $\frac{1}{\sqrt{1-y^{2}}}$.

$$
\begin{aligned}
\int \frac{1}{\sqrt{2-x^{2}}} d x & =\int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1-\frac{x^{2}}{2}}} d x=\int \frac{1}{\sqrt{1-\left(\frac{x}{\sqrt{2}}\right)^{2}}} \frac{1}{\sqrt{2}} d x \quad\left[\begin{array}{c}
y=\frac{x}{\sqrt{2}} \\
d y=\frac{1}{\sqrt{2}} d x
\end{array}\right] \\
& =\int \frac{1}{\sqrt{1-y^{2}}} d y=\sin ^{-1}(y)+C=\sin ^{-1}\left(\frac{x}{\sqrt{2}}\right)+C
\end{aligned}
$$

example: Find $\int \frac{1}{\sqrt{1+x-x^{2}}} d x$. Again, we want to force the integrand into the form $\frac{1}{\sqrt{1-y^{2}}}$. Since we have a three-term quadratic, we complete the square ${ }^{\dagger}$

$$
\begin{gathered}
x^{2}-x-1=x^{2}-2\left(\frac{1}{2}\right) x+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}-1=\left(x-\frac{1}{2}\right)^{2}-\frac{5}{4} \\
1+x-x^{2}=\frac{5}{4}-\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}\left(1-\frac{4}{5}\left(x-\frac{1}{2}\right)^{2}\right)=\frac{5}{4}\left(1-\left(\frac{2}{\sqrt{5}} x-\frac{1}{\sqrt{5}}\right)^{2}\right) .
\end{gathered}
$$

Thus we take $y=\frac{2}{\sqrt{5}} x-\frac{1}{\sqrt{5}}, d y=\frac{2}{\sqrt{5}} d x$, and obtain the impressive integral:

$$
\begin{gathered}
\int \frac{1}{\sqrt{1+x-x^{2}}} d x=\int \frac{1}{\sqrt{\frac{5}{4}\left(1-\left(\frac{2}{\sqrt{5}} x-\frac{1}{\sqrt{5}}\right)^{2}\right)}} d x=\int \frac{1}{\sqrt{1-\left(\frac{2}{\sqrt{5}} x-\frac{1}{\sqrt{5}}\right)^{2}}} \frac{2}{\sqrt{5}} d x \\
=\int \frac{1}{\sqrt{1-y^{2}}} d y=\sin ^{-1}(y)+C=\sin ^{-1}\left(\frac{2}{\sqrt{5}} x-\frac{1}{\sqrt{5}}\right)+C .
\end{gathered}
$$

Graphs of inverse functions

[^1]

The strange standard domain for $\sec (\theta)$ is $\theta \in\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right)$, chosen to make signs work out in $\left(\sec ^{-1}\right)^{\prime}(y)=\frac{1}{y \sqrt{y^{2}-1}}$. If we took $\theta \in[0, \pi]$, we would get $\left(\sec ^{-1}\right)^{\prime}(y)=\frac{1}{|y| \sqrt{y^{2}-1}}$. To avoid this headache, we usually write $\int \frac{1}{y \sqrt{y^{2}-1}} d y=\tan ^{-1} \sqrt{y^{2}-1}$, not $\sec ^{-1}(y)$. Indeed, for $y \geq 1$ these are the same, $\tan ^{-1} \sqrt{y^{2}-1}=\sec ^{-1}(y)$; but for $y \leq-1$ they differ by $+\pi$ (red curve). The function $\tan ^{-1} \sqrt{y^{2}-1}$ is an even function, not an inverse, but it is unambiguously defined and has the correct derivative: $\left(\tan ^{-1} \sqrt{y^{2}-1}\right)^{\prime}=\frac{1}{y \sqrt{y^{2}-1}}$.

[^0]: Notes by Peter Magyar magyar@math.msu.edu
 *Radian angle θ means the length of an arc on the unit circle: a full circle has circumference $2 \pi \mathrm{rad}$.

[^1]: ${ }^{\dagger} x^{2}+b x+c=x^{2}+2\left(\frac{b}{2}\right) x+\left(\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c=\left(x+\frac{b}{2}\right)^{2}+\frac{b^{2}-4 c}{4}$, leading to the Quadratic Formula.

