Review of integrals. The definite integral gives the cumulative total of many small parts, such as the slivers which add up to the area under a graph. Numerically, it is a limit of Riemann sums:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where we divide the interval $x \in[a, b]$ into n increments of size $\Delta x=\frac{b-a}{n}$ with division points $a<a+\Delta x<a+2 \Delta x<\cdots<a+n \Delta x=b$, and $x_{1}, \ldots x_{n}$ are sample points from each increment. This definition is not a theoretical curiosity: it is the reason integrals are relevant to physical problems, and it is the only way to evaluate most integrals: there is no algebraic way.

However, for sufficiently simple functions $f(x)$, we can evaluate integrals algebraically by the shortcut of the Second Fundamental Theorem of Calculus. This says that if $f(x)$ is the rate of change of some known antiderivative $F(x)$, then the integral of $f(x)$ is the cumulative total change of $F(x)$:

$$
F^{\prime}(x)=f(x) \quad \Longrightarrow \quad \int_{a}^{b} f(x) d x=\left.F(x)\right|_{x=a} ^{x=b}=F(b)-F(a) .
$$

(The First Fundamental Theorem says that the definite integral gives an antiderivative even if there is no formula $F(x)$: defining $I(x)=\int_{a}^{x} f(t) d t$, we have $I^{\prime}(x)=f(x)$.)

Algebraic integration is the process of finding antiderivative formulas, denoted as indefinite integrals $\int f(x) d x=F(x)+C$. The most direct method is to reverse Basic Derivatives, such as $\left(x^{p}\right)^{\prime}=p x^{p-1}$ reversing to $\int x^{p} d x=\frac{x^{p+1}}{p+1}$. Our only other integration method so far is the Substitution Method, which reverses the Chain Rule:

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u=F(u)+C \quad \text { where } u=g(x) \text { and } F^{\prime}(u)=f(u)
$$

Reversing the Product Rule. Since we have:

$$
(f(x) g(x))^{\prime}=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

we can take the antiderivative of both sides to give:

$$
\begin{aligned}
& f(x) g(x)=\int f(x) g^{\prime}(x) d x+\int g(x) f^{\prime}(x) d x \\
& \int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
\end{aligned}
$$

In Leibnitz notation, taking $u=f(x), d u=f^{\prime}(x) d x$ and $v=g(x), d v=g^{\prime}(x) d x$:

$$
\int u d v=u v-\int v d u
$$

This method transforms the integral of a product $f(x) g^{\prime}(x)$ into $f(x) g(x)$ minus the integral of $g(x) f^{\prime}(x)$, the other term in the Product Rule; we can think of lowering $f(x)$ to its derivative $f^{\prime}(x)$ and raising $g^{\prime}(x)$ to its antiderivative $g(x)$.

[^0]
Method for Integration by Parts.

1. Given an indefinite integral $\int h(x) d x$, find a factor of the integrand $h(x)$ which you recognize as the derivative of a function $g(x)$: that is, write $h(x)=f(x) \cdot g^{\prime}(x)$.
2. Taking $u=f(x), d v=g^{\prime}(x) d x$, transform the integral $\int h(x) d x=\int u d v$ into $u v-\int v d u=f(x) g(x)-\int g(x) f^{\prime}(x) d x$.
3. Simplify $g(x) f^{\prime}(x)$, possibly using identities, and try to find its integral by other methods such as Substitution.
4. Sometimes you can repeat Steps $1 \& 2$ on $\int g(x) f^{\prime}(x) d x$ with a different $u, v .{ }^{*}$ This might result in a simpler integral which you can evaluate by other methods.
5. Instead of simplifying the integral, Step 3 or 4 might give an expression with the same integral you started with. Solve the resulting equation to find that integral.

Notice that Step 1 is the same as for the Method of Substitution, where you must find a factor of the integrand which is a known derivative $g^{\prime}(x)$; but for Substitution, $g(x)$ must also appear as an inside function in the remaining factor: $h(x)=f(g(x)) \cdot g^{\prime}(x)$.
example: Evaluate $\int x \cos (x) d x$. There are two obvious candidates for u, v. First, if we take $u=\cos (x), d v=x d x$, we get $d u=-\sin (x) d x, v=\frac{1}{2} x^{2}$, and:

$$
\begin{array}{ccccc}
\int u d v & = & u v & - & \int v d u \\
\int \cos (x) x d x & = & \cos (x)\left(\frac{1}{2} x^{2}\right) & - & \int \frac{1}{2} x^{2}(-\sin (x)) d x
\end{array}
$$

Unfortunately, the new integral $\int x^{2} \sin (x) d x$ is harder than the original $\int x \cos (x) d x$. We must make a wiser choice of u, v, so that the derivative $d u$ will be simpler than the original u, while the antiderivative v will be no worse than the original $d v$.

The other obvious choice will work: take $u=x, d v=\cos (x) d x$, so that $d u=1 d x$ and $v=\sin (x)$. Then: ${ }^{\dagger}$

$$
\begin{aligned}
\int u d v & =u v
\end{aligned}-\int v d u \quad\left\{\begin{aligned}
& \int x \cos (x) d x=x \sin (x) \\
&-\int \sin (x) 1 d x \\
&=x \sin (x)+ \\
& \cos (x) .
\end{aligned}\right.
$$

Thus, Steps 1-3 were enough to integrate.
To check our answer, we reverse our Integration by Parts using the Product Rule:

$$
\begin{gathered}
(x \sin (x)+\cos (x))^{\prime}=x \sin ^{\prime}(x)+\sin (x)(x)^{\prime}+\cos ^{\prime}(x) \\
\quad=x \cos (x)+\sin (x)-\sin (x)=x \cos (x)
\end{gathered}
$$

[^1]example: Evaluate $\int x^{2} e^{-x} d x$. We should choose $u=x^{2}, d v=e^{-x}$, so that $d u=2 x d x$ is simpler, but $v=-e^{-x}$ is no more complicated:
\[

$$
\begin{aligned}
& \int u d v=u v-\int v d u \\
& \int x^{2} e^{-x} d x=x^{2}\left(-e^{-x}\right)-\int\left(-e^{-x}\right) 2 x d x \\
& =-x^{2} e^{-x}+2 \int x e^{-x} d x
\end{aligned}
$$
\]

Going on to Step 4, we repeat the process for the integral on the right side, this time with $u=x, d v=e^{-x} d x$ and $d u=d x, v=-e^{-x}$:

$$
\begin{aligned}
\int u d v & =u v \\
\int x e^{-x} d x & =x\left(-e^{-x}\right)-\int v d u \\
& =-x e^{-x}+\int e^{-x} d x \\
& =-x e^{-x}+\left(-e^{-x}\right) d x
\end{aligned}
$$

$$
\int x^{2} e^{-x} d x=-x^{2} e^{-x}+2\left(-x e^{-x}-e^{-x}\right)=-\left(x^{2}+2 x+2\right) e^{-x}
$$

example: Evaluate $\int e^{x} \sin (x) d x$. Steps $1-4$ give:

$$
\begin{array}{rlcc}
\int e^{x} \sin (x) d x & =e^{x} \sin (x)-\int e^{x} \cos (x) d x, & & u=\sin (x), v=e^{x} \\
& =e^{x} \sin (x)-\left(e^{x} \cos (x)-\int e^{x}(-\sin (x)) d x\right), & u=\cos (x), v=e^{x}
\end{array}
$$

We conclude:

$$
\int e^{x} \sin (x) d x=e^{x} \sin (x)-e^{x} \cos (x)-\int e^{x} \sin (x) d x .
$$

Since our integral $\int e^{x} \sin (x) d x$ appears on both sides, we go to Step 5 and solve for it:

$$
\int e^{x} \sin (x) d x=\frac{1}{2}\left(e^{x} \sin (x)-e^{x} \cos (x)\right) .
$$

example: Evaluate $\int \ln (x) d x$. Here there does not seem to be any $d v$ factor, but we can always take $d v=1 d x$, so $v=x$:

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int \ln (x) 1 d x & =\ln (x) x-\int x \frac{1}{x} d x \\
& =x \ln (x)-x .
\end{aligned}
$$

EXAMPLE: Evaluate $\int \sin ^{-1}(x) d x . \ddagger$ Again we must use $u=\sin ^{-1}(x)$ and $d v=1 d x$, counting on the fact that $d u$ is simpler than u :

$$
\begin{array}{ccccc}
\int u d v & = & u v & - & \int v d u \\
\int \sin ^{-1}(x) 1 d x & = & \sin ^{-1}(x) x & - & \int x \frac{1}{\sqrt{1-x^{2}}} d x
\end{array}
$$

Continuing Step 3, we use the substitution $z=1-x^{2}$ on the right-hand integral:

$$
\int x \frac{1}{\sqrt{1-x^{2}}} d x=-\frac{1}{2} \int \frac{1}{\sqrt{1-x^{2}}}(-2 x) d x=-\frac{1}{2} \int \frac{1}{\sqrt{z}} d z=-\sqrt{z}=-\sqrt{1-x^{2}} .
$$

Combining:

$$
\int \sin ^{-1}(x) d x=x \sin ^{-1}(x)-\left(-\sqrt{1-x^{2}}\right)=x \sin ^{-1}(x)+\sqrt{1-x^{2}} .
$$

[^2]
[^0]: Notes by Peter Magyar magyar@math.msu.edu

[^1]: *Repeating with the same factorization $\int v d u$ would get back the original integral $\int u d v$.
 ${ }^{\dagger}$ For brevity, we again neglect the arbitrary constant $+C$ in a general antiderivative, though you should write it on a test or quiz.

[^2]: ${ }^{\ddagger}$ Notation: $\sin ^{-1}(x)=\arcsin (x)$, but $\sin (x)^{-1}=\frac{1}{\sin (x)}=\csc (x)$.

