
Math 133 Partial Fractions Stewart §7.4

Integrating basic rational functions. For a function f(x), we have examined several
algebraic methods∗ for finding its indefinite integral (antiderivative) F (x) =

∫
f(x) dx,

which allows us to compute definite integrals
∫ b
a f(x) dx = F (b) − F (a) by the Second

Fundamental Theorem.
In this section, we will learn a special technique to integrate any rational function,

meaning a quotient of two polynomials:

f(x) =
g(x)

h(x)
=

amx
m + am−1x

m−1 + · · ·+ a1x+ a0
bnxn + bn−1xn−1 + · · ·+ b1x+ b0

,

where ai, bj are constant coefficients. We call the largest powers m and n the degrees of
the polynomials g(x) and h(x), assuming that the highest coefficients am, bn 6= 0.

We have several basic rational functions whose integrals we already know:

(i)

∫
amx

m + · · ·+ a1x+ a0 dx = am
m+1x

m+1 + · · ·+ a1
2 x

2 + a0x+ C.

(ii)

∫
1

x− a
dx = ln|x−a|+ C.

(iii)

∫
1

(x− a)n
dx = − 1

(n−1)(x− a)n−1
for n ≥ 2.

(iv)

∫
x

x2 + a
dx = 1

2

∫
1

x2 + a
· 2x dx = 1

2 ln|x2+a|+ C

(v)

∫
1

x2 + a
dx = 1√

a

∫
1

( x√
a
)2 + 1

· 1√
a
dx = 1√

a
arctan( x√

a
) + C, for a > 0.

(vi)

∫
1

(x2 + 1)2
dx. Letting x = tan(θ), x2+1 = sec2(θ), dx = sec2(θ) dθ:

∫
1

(x2 + 1)2
dx =

∫
1

sec4(θ)
sec2(θ) dθ =

∫
cos2(θ) dθ

= 1
2(θ + sin(θ) cos(θ)) + C = 1

2

(
arctan(x) +

x

x2 + 1

)
+ C .

We used:
∫

cos2(θ) dθ =
∫

1
2 + 1

2 cos(2θ) dθ = 1
2θ+ 1

4 sin(2θ) = 1
2θ+ 1

2 sin(θ) cos(θ),
and (as in §6.6) sin(θ) = x√

x2+1
, cos(θ) = 1√

x2+1
.

Quadratic denominator. With the above basic integrals, we can integrate any rational
function with numerator of degree at most 1 and denominator of degree at most 2:∫

px+ q

ax2 + bx+ c
dx .

There are two different cases, depending on the sign of the discriminant d = b2 − 4ac.
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example: Here is how to handle the case where d = b2 − 4ac > 0, such as:∫
x+ 1

x2 + x− 2
dx,

where d = 12 − 4(1)(−2) = 9. By the Quadratic Formula, the denominator has two real

roots x = −b±
√
b2−4ac
2a = 1,−2, which are the vertical asymptotes of our function:

We split our function into a sum of simple parts, each having just one vertical asymptote:

x+ 1

x2 + x− 2
=

x+ 1

(x−1)(x+2)
=

A

x−1
+

B

x+2
.

This is called the partial fraction expansion of our rational function. For any constants
A,B, the graph of the right-hand function will have the same asymptotes as our original
function, but we can actually find constants which make the two exactly equal. Clearing
denominators, we want A,B such that:

x+ 1 = A(x+2) +B(x−1) for all x.

Setting x = 1 gives 1 + 1 = A(1+2) + B(0), so A = 2
3 ; and setting x = −2 gives

−2 + 1 = A(0) +B(−2−1), so B = 1
3 . Now we can use the basic integral (ii) above:∫

x+ 1

x2 + x− 2
dx =

∫ 2
3

x−1
+

1
3

x+2
dx = 2

3 ln|x−1|+ 1
3 ln|x+2|+ C .

example: The other case is when d = b2 − 4ac < 0, such as:∫
x+ 1

x2 + x+ 1
dx,

for which d = 12 − 4(1)(1) = −3. In this case, the denominator has no real-number
zeroes: x2 + x + 1 > 0, and it cannot be factored; it is an irreducible polynomial. The
graph of x+1

x2+x+1
has no vertical asymptotes. Our strategy is to reduce its integral to the

basic integrals (iv) and (v) above.
The first step is to complete the square in the denominator and force it into the form

(x+p)2 + q, the same process that produces the Quadratic Formula:

x2 + x+ 1 = x2 + 2(12)x+ (12)2 − (12)2 + 1 = (x+1
2)2 + 3

4 .



Thus, letting u = x+ 1
2 , du = dx:∫

x+ 1

x2 + x+ 1
dx =

∫
(x+1

2)− 1
2 + 1

(x+1
2)2 + 3

4

dx

=

∫
u

u2 + 3
4

dx+ 1
2

∫
1

u2 + 3
4

dx

= 1
2 ln|u2+3

4 | + 1

2
√

3/4
arctan( u√

3/4
) + C

= 1
2 ln
∣∣x2+x+1

∣∣ + 1√
3

arctan(2x+1√
3

) + C.

In fact, the two terms in our answer correspond to splitting the original function (blue)
into a graph with reflection symmetry across the line x = −1

2 (green), and a graph with
180◦ rotation symmetry around the point (−1

2 , 0) (red):

example: One more case: if the numerator has degree greater than or equal to the
denominator, for example: ∫

x4 + 2x+ 3

x2 + x− 2
dx .

Then y = 0 is no longer a horizontal asymptote. Instead, the behavior of the function
as x→ ±∞ is controlled by a polynomial curve obtained by polynomial long division.

x2 − x + 3 rem − 3x+ 9

x2 + x− 2
)
x4 + 2x+ 3

−(x4 + x3 − 2x2)

− x3 + 2x2 + 2x+ 3

− (x3 − x + 2x)

3x2 + 3
− (3x2 + 3x− 6)

− 3x+ 9

Thus x4 + 2x+ 3 = (x2−x+3)·(x2+x−2) + (−3x+9), and:

x4 + 2x+ 3

x2 + x− 2
= (x2−x+3) +

−3x+ 9

x2 + x+ 1
= (x2−x+3) +

2

x− 1
− 5

x+ 2

The last equality is a partial fraction expansion similar to our first example above. Now:∫
x4 + 2x+ 3

x2 + x− 2
dx = 1

3x
3−1

2x
2+3x+ 2 ln|x−1| − 5 ln|x+2|+ C .



General case. The above techniques suffice to integrate any rational function
∫ g(x)

h(x) dx,

provided we can factor the denominator h(x). First, we perform a partial fraction
decomposition of f(x) into a sum of terms of the following forms:

• A polynomial q(x), which is the quotient in the long division g(x) ÷ h(x) = q(x)

with remainder r(x) of smaller degree than h(x), so that g(x)
h(x) = q(x) + r(x)

h(x) .

• For each linear factor x−c of the denominator h(x), suppose (x−a)n is the highest
power which divides h(x). Then we add a sum of n terms:

A1

x− a
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
.

• For each irreducible quadratic factor ax2 + bx+ c of h(x), suppose (ax2 + bx+ c)n

is the highest power which divides h(x). Then we add a sum of n terms:

B1x+ C1

ax2 + bx+ c
+

B2x+ C2

(ax2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(ax2 + bx+ c)n
.

Leaving aside the polynomial term q(x), we set r(x)/h(x) equal to the sum of all the other
terms above, then we clear the denominators and solve for all the unknown constants
in the numerators as we did for A,B in our first example above. (The Partial Fractions
Theorem states that a unique solution always exists.) Once this is done, we can integrate
using (i)–(vi) and the above examples (see also the integrals of higher powers below).

example: We find the partial fraction expansion of:

f(x) =
1

x2(x2 + 1)2
=

A1

x
+
A2

x2
+
B1x+C1

x2 + 1
+
B2x+C2

(x2 + 1)2
.

Since the numerator has degree less than the denominator, there is no polynomial term
q(x). We need to find the six constants A1, A2, B1, B2, C1, C2 which make the above
equation valid. Clearing denominators gives:

1 = A1x(x2+1)2 +A2(x
2+1)2 + (B1x+C1)x

2(x2+1) + (B2x+C2)x
2

= (A1+B1)x
5 + (A2+C1)x

4 + (2A1+B1+B2)x
3 + (2A2+C1+C2)x

2 +A1x+A2

Since this is an equality of polynomial functions, the coefficients of xk on the right must
equal the coefficients of 1 = 0x5 + · · ·+ 0x+ 1 on the left:

A1 +B1 = 0
A2 + C1 = 0

2A1 +B1 +B2 = 0
2A2 + C1 + C2 = 0
A1 = 0, A2 = 1.

We solve this as:

A1 = 0, A2 = 1, B1 = −A1 = 0, C1 = −A2 = −1,

B2 = −2A1 −B1 = 0, C2 = −2A2 − C1 = −1 .

Hence, according to (i)–(vi):∫
1

x2(x2 + 1)2
dx =

∫
1

x2
− 1

x2 + 1
− 1

(x2 + 1)2
dx

= −1

x
− arctan(x)− 1

2

(
arctan(x) +

x

x2 + 1

)
.



Trig integrals again. In §7.2–7.3, we reduced trig integrals by substitution to rational
function integrals, which we can now find by partial fractions. For example:∫

sec(x) dx =

∫
1

cos2(x)
· cos(x) dx =

∫
1

1− sin2(x)
· cos(x) dx

{
u = sin(x)
du = cos(x) dx

}
=

∫
1

1− u2
du =

∫ 1
2

1 + u
+

1
2

1− u
du

= 1
2 ln(1+u)− 1

2 ln(1−u) = ln

√
1+u

1−u
= ln

√
1+ sin(x)

1− sin(x)
.

challenge: Show by identities that this is equal to our previous answer
∫

sec(x) dx =
ln|tan(x) + sec(x)| given in §7.2 . Also: try this method on

∫
sec3(x) dx =

∫
1

(1−u2)2
du.

challenge: Integrate
∫√

tan(x) dx. The substitution u = tan(x), x = arctan(u),

dx = 1
u2+1

du gives
∫ √u

u2+1
du. Then z =

√
u reduces this to a rational function. For

partial fractions, factor z4 + 1 = (z2+1)2 − 2z2 = (z2 + 1 +
√

2 z)(z2 + 1−
√

2 z). Solve:

z2

z4 + 1
=

Az +B

z2 +
√

2 z + 1
+

Cz +D

z2 −
√

2 z + 1
.

Higher quadratic powers. For powers of irreducible quadratics in the denominator:

(∗)
∫

x

(x2 + 1)n
dx = − 1

2(n−1)(1 + x2)n−1
,

using the substitution u = x2 + 1. The other basic rational integral

In =

∫
1

(x2 + 1)n
dx

can be evaluated recursively using Integration by Parts and the previous integral:

In =
∫

1
(x2+1)n

dx =
∫

x2+1
(x2+1)n

dx−
∫

x2

(x2+1)n
dx since 1 = (x2+1)− x2

=
∫

1
(x2+1)n−1 dx−

∫
x · x

(x2+1)n
dx setting up Int By Parts

=
∫

1
(x2+1)n−1 dx+ x · 1

2(n−1)(x2+1)n−1 −
∫

1 · 1
2(n−1)(x2+1)n−1 dx by IBP and integral (∗)

= In−1 + x
2(n−1)(1+x2)n−1 − 1

2(n−1)In−1 by definition of In−1.

Simplifying, we get the recursive formula:

In =
2n−3

2(n−1)
In−1 +

x

2(n−1)(x2 + 1)n−1
.

example: For n = 3, we already know I2 =
∫

1
(x2+1)2

dx = 1
2(arctan(x) + x

x2+1
), so:

I3 =
∫

1
(x2+1)3

dx = 2(3)−3
2(3−1)I2 + x

2(3−1)(x2+1)2

= 3
4
1
2(arctan(x) + x

x2+1
) + 1

4
x

(x2+1)2

= 3
8 arctan(x) + x(3x2+5)

8(x2+1)2
.


