
Math 133 Improper Integrals Stewart §7.8

Integrals near a vertical asymptote. What happens if we take the integral of a
function over an interval containing a vertical asymptote, such as:

I =

∫ 2

0

1

x
dx = ??

Algebraically, we would get I = ln |2| − ln |0|, but ln(0) is undefined. Numerically, the
Riemann sum for I does not converge, because of the very large values of f(x) near
x = 0. Geometrically, I measures a region (the positive area in the graph on the next
page) which stretches infinitely along the asymptote x = 0, and the meaning of such
an infinitely extended area is not clear.

Our previous definitions fail to give meaning to this integral, so we give a new
definition: ∫ 2

0

1

x
dx = lim

r→0+

∫ 2

r

1

x
dx.

That is, we take the integral over the interval x ∈ [r, 2] where the function is continuous,
then take the limit as r squeezes up against the asymptote x = 0 from the right. Now,∫ 2
r

1
x dx = ln |2| − ln |r|, and limr→0+ ln(r) = −∞, meaning ln(r) becomes a larger and

larger negative number, so the improper integral is:∗∫ 2

0

1

x
dx = lim

r→0+
ln(2)− ln(r) = ∞.

This says that the total area under the graph y = 1
x and above [0, 2] is infinite:

no matter how many square units of paint are put on this region, there will still be
unpainted area high up next to the asymptote.

General definition: If the function f(x) has a vertical asymptote near x = q, we
define the improper integral of vertical type:

• on an interval [a, q] as

∫ q

a
f(x) dx = lim

r→q−

∫ r

a
f(x) dx;

• on an interval [q, b] as

∫ b

q
f(x) dx = lim

r→q+

∫ b

r
f(x) dx.

• on an interval with q ∈ (a, b) as

∫ b

a
f(x) dx =

∫ q

a
f(x) dx+

∫ b

q
f(x) dx.

If such an integral has a finite value, we say it converges; if it is infinite or undefined,
we say it diverges.

Notes by Peter Magyar magyar@math.msu.edu
∗We take ln(2) minus a larger and larger negative number; and this equals a larger and larger

positive number, denoted by ∞.



example: Evaluate
∫ 2
−1

1
x dx. This attempts to measure two infinite regions: one above

[0, 2] along the positive y-axis, and another below [−1, 0] along the negative y-axis.

The improper integral avoids the asymptote from both sides:∫ 2

−1

1

x
dx =

∫ 0

−1

1

x
dx+

∫ 2

0

1

x
dx = lim

r→0−

∫ r

−1

1

x
dx + lim

r→0+

∫ 2

r

1

x
dx.

But when we try to calculate this, we get:∫ 2

−1

1

x
dx =

(
lim
r→0−

ln |r| − ln |− 1|
)

+

(
lim
r→0+

ln |2| − ln |r|
)

= −∞+∞ ,

which is an indeterminate form: the integral is truly undefined. We have no clear
meaning for an infinite positive area canceled by an infinite negative area. In particular,
the naive answer is wrong:∫ 2

−1

1

x
dx = undefined 6= ln |2| − ln |− 1|.

example: Evaluate
∫ 2
1

1√
x−1 dx. Since the vertical asymptote is x = 1, we have:∫ 2

1

1√
x− 1

dx = lim
r→1+

∫ 2

r

1√
x− 1

dx = lim
r→1+

2
√
x−1

∣∣x=2

x=r

= lim
r→1+

2
√

2−1− 2
√
r−1 = 2− 0 = 2.

In this case, the region has a finite area of 2, even though it stretches infinitely high
along the vertical asymptote. Thus, if we have enough paint for 2 square units, and
paint higher and higher parts of the region using less and less paint, we never run out.



Integrals near a horizontal asymptote. If y = f(x) has y = 0 as a horizontal
asymptote, we can define improper integrals of horizontal type.

• If limx→∞ f(x) = 0, we define the integral on an interval [a,∞) as:∫ ∞
a

f(x) dx = lim
r→∞

∫ r

a
f(x) dx.

• If limx→∞ f(x) = 0, we define the integral over an interval (−∞, a] as:∫ a

−∞
f(x) dx = lim

r→−∞

∫ a

r
f(x) dx.

• If limx→±∞ f(x) = 0, we define its integral over the whole real line (−∞,∞) by
splitting at any finite value x = a:∫ ∞

−∞
f(x) dx =

∫ a

−∞
f(x) dx+

∫ ∞
a

f(x) dx for any a.

example:
∫∞
1

1
x2
dx = lim

r→∞

∫ r
1

1
x2
dx = lim

r→∞

(
− 1

x

)∣∣x=r
x=1

= limr→∞−1
r + 1

1 = 1 .

This integral measures a region which stretches infinitely along the x-axis above [1,∞),
but which has a finite total area of 1.

On the other hand
∫∞
1

1√
x
dx = limr→∞ 2

√
x |x=rx=1 = ∞. In fact,

∫∞
1

1
xp dx is

finite if p > 1, but is infinite if p ≤ 1. Informally, the faster f(x) shrinks as x → ∞,
the easier it is for the integral to converge to a finite value.

example:
∫∞
0 e−x dx = limr→∞

∫ r
0 e
−x dx = limr→∞ −e−x|x=rx=0 = −0− (−1) = 1.

It is not surprising that this converges, because e−x shrinks faster than 1
xp for any p.

example: ∫ ∞
−∞

1

1 + x2
dx = lim

r→−∞

∫ 0

r

1

1 + x2
dx + lim

r→∞

∫ r

0

1

1 + x2
dx

= lim
r→−∞

tan−1(x)
∣∣x=0

x=r
+ lim

r→∞
tan−1(x)

∣∣x=r
x=0

=
(
0− (−π

2 )
)

+
(
π
2 − 0

)
= π.

Remarkably, the total area under y = 1
1+x2

turns out to be π, same as a unit circle!



Comparison tests for convergence. Sometimes an improper integral is too compli-
cated to find an algebraic antiderivative, but we can still be sure it converges because
the infinite region measured fits inside a larger region of known finite area.

For example, the Gaussian bell-curve integral
∫∞
1 e−x

2
dx cannot be integrated by

an antiderivative. However, for x ≥ 1, we have x2 ≥ x, so e−x
2 ≤ e−x: that is, the

curve y = e−x
2

lies below y = e−x:

We can easily evaluate the area below the upper curve, which shows that the smaller
area under the lower curve is finite, i.e. the improper integral converges:∫ ∞

1
e−x

2
dx <

∫ ∞
1

e−x dx = 0− (−e−1) = 1
e ≈ 0.37 .

Direct Comparison Test: Consider an improper integral
∫ b
a g(x), with a or b infinite.

• If |f(x)| ≤ g(x) for x∈ [a, b], and
∫ b
a g(x) dx converges, then

∫ b
a f(x) dx converges.

• If f(x)≥ g(x)≥ 0 for x∈ [a, b] and
∫ b
a g(x) dx diverges, then

∫ b
a f(x) dx diverges.

The proof uses the Domination Rule for ordinary integrals (§4.2), plus some complica-
tions with limits.

example: Does
∫∞
0

4 sin(x)+1
e2x+x2

dx converge? This function shrinks rapidly, since the top
does not grow, and the bottom grows exponentially; thus we guess that the integral con-
verges. To prove this using the first part of the Test, we should bound f(x) = 4 sin(x)+1

e2x+x2

inside the graph of a fairly simple comparison function g(x) = g1(x)
g2(x)

with |f(x)| ≤ g(x).

Now, increasing the numerator of f(x) and decreasing its denominator gives a larger
fraction, so we take: ∣∣∣∣4 sin(x) + 1

e2x + x2

∣∣∣∣ ≤ 5

e2x
= 5e−2x .

The comparison integral converges:
∫∞
0 5e−2x dx = limr→∞

(
−5

2e
−2x)∣∣x=r

x=0
= 5

2 ; hence
the original integral also converges:∣∣∣∣∫ ∞

0

4 sin(x) + 1

e2x + x2
dx

∣∣∣∣ ≤ 5
2 .

By contrast, to prove divergence of a fractional f(x), we would bound f(x) ≥ g(x),
above a floor function g(x) with smaller numerator and larger denominator, and∫
g(x) dx =∞.



Limit Comparison Test or Ratio Comparison Test: For functions f(x), g(x) with lim
x→∞

f(x)
g(x) =

L 6= 0, the improper integral
∫∞
a f(x) dx converges if and only if

∫∞
a g(x) dx converges.

In the case that g(x) ≥ 0, this is simply because, given limx→∞
f(x)
g(x) = L, we can

take x large enough so that 1
2Lg(x) ≤ f(x) ≤ 3

2Lg(x), and we can apply the Direct
Comparison Test.

To apply this Test to
∫∞
a f(x) dx for a fraction f(x) = f1(x)

f2(x)
, we generally choose

the comparison function g(x) = g1(x)
g2(x)

where g1(x) is the largest term in f1(x), and

likewise with g2(x) and f2(x). For example, for:

f(x) =
x2 − e−x + sin(x)√

x5 + 7
take g(x) =

x2√
x5

= x−1/2 ,

and we easily see limx→∞
f(x)
g(x) = 1 (see §6.8). We previously showed

∫∞
a x−1/2 dx

diverges, so the original integral
∫∞
a f(x) dx also diverges.


