Arclength

Increments of length. In this section, we give an integral formula to compute the length of a curve, by the same Method of Slice Analysis we used in $\S5.2$ to compute volume, and in $\S5.3$ to compute work (see end $\S5.2$).

We want the arclength L of a graph curve y = f(x) for $x \in [a, b]$. We cut the curve into n bits determined by Δx -increments of $x \in [a, b]$. (In the picture, n = 5.)

Because the bit at the sample point x_i is so short, it is well approximated by a straight segment, and we can use the Pythagorean Theorem to compute its length:

$$\Delta L_i \approx \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

We want to write this as a term in a Riemann sum, so we must write it in the form $g(x_i) \Delta x$ for some function g(x). We simply factor out Δx :

$$\Delta L_i \approx \sqrt{\left(1 + \frac{(\Delta y)^2}{(\Delta x)^2}\right)(\Delta x)^2} = \sqrt{1 + (\frac{\Delta y}{\Delta x})^2} \Delta x$$

In the limit as $n \to \infty$, we get $\Delta x \to 0$ and $\frac{\Delta y}{\Delta x} \to \frac{dy}{dx} = f'(x_i)$, and the Riemann sum total of the ΔL_i 's becomes an integral:

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta L_i = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + (\frac{\Delta y}{\Delta x})^2} \Delta x = \int_a^b \sqrt{1 + (\frac{dy}{dx})^2} \, dx \,.$$

In Newton notation:

$$L = \int_{a}^{b} \sqrt{1 + y'(x)^2} \, dx.$$

EXAMPLE: Compute the arclength of the curve $y = x\sqrt{x}$ over the interval $x \in [0, 4]$. We have $\frac{dy}{dx} = (x^{3/2})' = \frac{3}{2}x^{1/2}$, so:

$$L = \int_0^4 \sqrt{1 + (\frac{dy}{dx})^2} \, dx = \int_0^4 \sqrt{1 + \frac{9}{4}x} \, dx = \left. \frac{8}{27} (1 + \frac{9}{4}x)^{3/2} \right|_{x=0}^{x=4} = \left. \frac{8}{27} (\sqrt{10} - 1) \right. \approx 9.07$$

To check this, we compare with the straight-line distance between the endpoints (0,0) and (4,8): this is $\sqrt{4^2+8^2} \approx 8.9$, and indeed the length of the curve is slightly larger.

Math 133

Notes by Peter Magyar magyar@math.msu.edu

EXAMPLE: Compute the circumference of the unit circle, which is twice the arclength of the graph $y = \sqrt{1-x^2}$ for $x \in [-1, 1]$:

$$C = 2L = 2\int_{-1}^{1} \sqrt{1 + \left(\frac{d}{dx}\sqrt{1-x^2}\right)^2} \, dx = 2\int_{-1}^{1} \sqrt{1 + \left(\frac{-2x}{2\sqrt{1-x^2}}\right)^2} \, dx$$
$$= 2\int_{-1}^{1} \sqrt{\frac{1-x^2+x^2}{1-x^2}} \, dx = 2\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \, dx = 2\arcsin(x)\Big|_{x=-1}^{x=1} = 2\pi.$$

EXAMPLE: Compute the arclength of the parabola $y = x^2$ over any interval $x \in [0, b]$.

$$L = \int_0^b \sqrt{1 + (\frac{d}{dx}(x^2))^2} \, dx = \int_0^b \sqrt{1 + 4x^2} \, dx$$

To find the indefinite integral, we use the reverse trig substitution (§7.3): $x = \frac{1}{2} \tan(\theta)$, $\sqrt{1+4x^2} = \sec(\theta)$, $dx = \frac{1}{2} \sec^2(\theta) dx$:

$$\int \sqrt{1+4x^2} \, dx = \int \frac{1}{2} \sec^3(\theta) \, d\theta = \frac{1}{4} \ln \left| \tan(\theta) + \sec(\theta) \right| + \frac{1}{4} \tan(\theta) \sec(\theta),$$

where we use $\int \sec^3(\theta) d\theta$ from §7.2. Restoring the original variable, $\tan(\theta) = 2x$, $\sec(\theta) = \sqrt{1+4x^2}$, and taking the definite integral:

$$L = \left[\frac{1}{4}\ln\left|2x + \sqrt{1 + 4x^2}\right| + \frac{1}{2}x\sqrt{1 + 4x^2}\right]_{x=0}^{x=b} = \frac{1}{4}\ln\left|2b + \sqrt{1 + 4b^2}\right| + \frac{1}{2}b\sqrt{1 + 4b^2}$$

Arclength tends to get quite complicated even for quite simple curves!

EXAMPLE: Compute the arclength of the curve $y = x^3$ over $x \in [0, 1]$.

$$L = \int_0^1 \sqrt{1 + (\frac{d}{dx}(x^3))^2} \, dx = \int_0^1 \sqrt{1 + 9x^4} \, dx.$$

This is already complicated enough that it has no algebraic antiderivative.*

Does this mean the arclength formula is useless? Not at all! We cannot get an answer on the algebraic level, but we can still get a numerical answer as accurate as we like. This means going from the integral formula for L back to the Riemann sums from which we deduced the integral. For example, taking n = 1000, the increment is $\Delta x = \frac{1}{1000} = 0.001$, and the sample points are $x_i = i \Delta x = (0.001)i$. The computer gives:

$$L \approx \sum_{i=1}^{n} \sqrt{1 + 9x_i^4} \Delta x = \sum_{i=1}^{1000} \sqrt{1 + 9(10^{-12})i^4} (0.001) \approx 1.548,$$

To gauge the accuracy of this, we re-do it with n = 10,000, getting $L \approx 1.547$, so we can be confident that $L \approx 1.54$ is accurate to 2 decimal places.

^{*}The integral can be expressed in terms of an "elliptic function", but this is circular reasoning since elliptic functions themselves are defined as integrals!