
Math 133 Arclength Stewart §8.1

Increments of length. In this section, we give an integral formula to compute the
length of a curve, by the same Method of Slice Analysis we used in §5.2 to compute
volume, and in §5.3 to compute work (see end §5.2).

We want the arclength L of a graph curve y = f(x) for x ∈ [a, b]. We cut the curve
into n bits determined by ∆x-increments of x ∈ [a, b]. (In the picture, n = 5.)

Because the bit at the sample point xi is so short, it is well approximated by a straight
segment, and we can use the Pythagorean Theorem to compute its length:

∆Li ≈
√

(∆x)2 + (∆y)2 .

We want to write this as a term in a Riemann sum, so we must write it in the form
g(xi) ∆x for some function g(x). We simply factor out ∆x:

∆Li ≈
√(

1 + (∆y)2

(∆x)2

)
(∆x)2 =

√
1 + ( ∆y

∆x)2 ∆x .

In the limit as n → ∞, we get ∆x → 0 and ∆y
∆x →

dy
dx = f ′(xi), and the Riemann sum

total of the ∆Li’s becomes an integral:

L = lim
n→∞

n∑
i=1

∆Li = lim
n→∞

n∑
i=1

√
1 + ( ∆y

∆x)2 ∆x =

∫ b

a

√
1 + ( dydx)2 dx .

In Newton notation:

L =

∫ b

a

√
1 + y′(x)2 dx .

example: Compute the arclength of the curve y = x
√
x over the interval x ∈ [0, 4]. We

have dy
dx = (x3/2)′ = 3

2x
1/2, so:

L =

∫ 4

0

√
1 + ( dydx)2 dx =

∫ 4

0

√
1 + 9

4x dx = 8
27(1+9

4x)3/2
∣∣∣x=4

x=0
= 8

27(
√

10−1) ≈ 9.07

To check this, we compare with the straight-line distance between the endpoints (0, 0)
and (4, 8): this is

√
42 + 82 ≈ 8.9, and indeed the length of the curve is slightly larger.
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example: Compute the circumference of the unit circle, which is twice the arclength of
the graph y =

√
1−x2 for x ∈ [−1, 1]:

C = 2L = 2

∫ 1

−1

√
1 + ( d

dx

√
1−x2 )2 dx = 2

∫ 1

−1

√
1 +

(
−2x

2
√

1−x2

)2
dx

= 2

∫ 1

−1

√
1− x2 + x2

1− x2
dx = 2

∫ 1

−1

1√
1−x2

dx = 2 arcsin(x)
∣∣∣x=1

x=−1
= 2π .

example: Compute the arclength of the parabola y = x2 over any interval x ∈ [0, b].

L =

∫ b

0

√
1 + ( d

dx(x2))2 dx =

∫ b

0

√
1 + 4x2 dx .

To find the indefinite integral, we use the reverse trig substitution (§7.3): x = 1
2 tan(θ),√

1 + 4x2 = sec(θ), dx = 1
2 sec2(θ) dx:∫ √

1 + 4x2 dx =

∫
1
2 sec3(θ) dθ = 1

4 ln
∣∣tan(θ)+ sec(θ)

∣∣ + 1
4 tan(θ) sec(θ),

where we use
∫

sec3(θ) dθ from §7.2. Restoring the original variable, tan(θ) = 2x,
sec(θ) =

√
1+4x2 , and taking the definite integral:

L =
[

1
4 ln
∣∣∣2x+

√
1+4x2

∣∣∣ + 1
2x
√

1+4x2
]x=b

x=0
= 1

4 ln
∣∣∣2b+√1+4b2

∣∣∣ + 1
2b
√

1+4b2 .

Arclength tends to get quite complicated even for quite simple curves!

example: Compute the arclength of the curve y = x3 over x ∈ [0, 1].

L =

∫ 1

0

√
1 + ( d

dx(x3))2 dx =

∫ 1

0

√
1 + 9x4 dx .

This is already complicated enough that it has no algebraic antiderivative.∗

Does this mean the arclength formula is useless? Not at all! We cannot get an
answer on the algebraic level, but we can still get a numerical answer as accurate as
we like. This means going from the integral formula for L back to the Riemann sums
from which we deduced the integral. For example, taking n = 1000, the increment is
∆x = 1

1000 = 0.001, and the sample points are xi = i∆x = (0.001)i. The computer
gives:

L ≈
n∑

i=1

√
1 + 9x4

i ∆x =
1000∑
i=1

√
1 + 9(10−12)i4 (0.001) ≈ 1.548 ,

To gauge the accuracy of this, we re-do it with n = 10, 000, getting L ≈ 1.547, so we
can be confident that L ≈ 1.54 is accurate to 2 decimal places.

∗The integral can be expressed in terms of an “elliptic function”, but this is circular reasoning since
elliptic functions themselves are defined as integrals!


