
Math 881 HW 2/10 Solutions Spring 2006

We have defined several measures of graph connectivity which are less sen-
sitive to small-scale phenomena than the classical connectivity κV (G) or
κE(G), and which better capture the features we seek in a robustly con-
nected network. Let G = (V,E) be a graph with n vertices. Let S ⊂ V be
any set of vertices, S �= ∅, V , and let S = V − S be the complement.

• Vertex Cheeger constant (restricted):

g′(G) := min
|S|≤n/2

|δ(S)|
|S| .

Here the vertex boundary δ(S) := N(S) − S is the set of neighbors of
S not including S itself. This is the most important measure.

• Vertex Cheeger constant (unrestricted):

g(G) := min
S

|δ(S)|
min(|S|, |S|) .

• Edge Cheeger constant:

h(G) := min
|S|≤n/2

|E(S, S)|
|S|

= min
S

|E(S, S)|
min(|S|, |S|) .

Here the edge boundary E(S, S) is the set of edges between S and S. In
this case there is no difference between the restricted and unrestricted
version, since E(S, S) = E(S, S).
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1. We compute these measures for some of our favorite graphs. In each case
g(G) = g′(G) , except for the complete graph Kn with n odd, in which case
g(G) = 1 and g′(G) = n+1

n−1
= 1 + 2

n−1
.

Graph S for g g(G) S for h h(G) κV (G) κE(G)

Cycle Cn

n even n
2

interval 4
n

n
2

interval 4
n

2 2

n odd n−1
2

interval 4
n−1

n−1
2

interval 4
n−1

2 2

Complete Kn

n even |S| = n
2

1 |S| = n
2

n
2

n−1 n−1

n odd |S| = n+1
2

1 |S| = n−1
2

n+1
2

n−1 n−1

Tetrahedron K4 1.0 2.0 3 3

Octahedron triangle 3
3

= 1.0 triangle 6
3

= 2.0 4 4

Icosahedron N(v) 5
6

= 0.83 N(v) 10
6

= 1.67 5 5

Cube N(v) 3
4

= 0.75 square 4
4

= 1.0 3 3

Dodecahedron N(pentagon) 5
10

= 0.5 N(N(v)) 6
10

= 0.6 3 3

Here N(S) means S together with its neighbors. Note that κV (G) = κE(G) =
d(v) in each case, so these are governed only by the degree at each vertex.
However g(G) and h(G) suggest that globally, the icosahedron is more con-
nected than the cube, which is more connected that the dodecahedron.

2. Consider the wrapped grid graph Gm = Cm × Cm , consisting of m2 ver-
tices (i, j) mod m having the 4 neighbors (i±1, j), (i, j±1) . As m → ∞,
the computation of the minimizing set S with

g′(m) := g′(Gm) =
|δ(S)|
|S|

approximates the isomperimetric problem in plane geometry. That is, find
the plane region R ⊂ R2 with a fixed area A = A(R) that has the minimal
perimeter P (R).
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For a given shape R, dilating by a scalar t ≥ 0 multiplies the perimeter
by t and the area by t2, so we have a formlua:

P (tR) = i(R) A(tR)1/2

where i(R) is the isoperimetric constant of R. The optimal shape will have
the smallest isoperimetric constant.

If the boundary curve of R is parametrized by (x(t), y(t)) for a ≤ t ≤ b,
the usual perimeter is:

P (R) :=

∫ b

a

√
x′(t)2 + y′(t)2 dt .

The optimal shape in this case is R = C, the circle defined by:
√

x2 + y2 ≤ r

for r =
√

A/π . This gives:

P (C) = 2
√

π A(R)1/2 ∼= 3.5 A(R)1/2 .

However, in our discrete case, the vertex boundary approaches a different
measure of perimeter from the usual geometric one:

PV (R) :=

∫ b

a

max(|x′(t)|, |y′(t)|) dt .

In this case, the minimum PV for a given area is attained by R = D a
diamond (rotated square) defined by: |x| + |y| ≤ r for r =

√
A/2 . This

gives:
PV (D) = 2

√
2 A(D)1/2 ∼= 2.8 A(D)1/2 ;

whereas the circle gives:

PV (C) = 4
√

2
π

A(C)1/2 ∼= 3.2 A(C)1/2 .

That is, iV (C) ∼= 4.2, about 10% below i(C) ∼= 4.5
To compute g′(m) we set A = n/2 = m2/2 , so that for the optimal shape

R = D ,

g′(m) ∼= PV (D)

A(D)
=

iV (D)

(m2/2)1/2
=

√
2 iV (D)

m
= 4 m−1 .

Using the non-optimal R = C gives:

g′(m) ≤
√

2 iV (C)

m
=

8√
π

m−1 ∼= 4.5m−1 .
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