Math 881

We have defined several measures of graph connectivity which are less sensitive to small-scale phenomena than the classical connectivity $\kappa_{V}(G)$ or $\kappa_{E}(G)$, and which better capture the features we seek in a robustly connected network. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with n vertices. Let $S \subset V$ be any set of vertices, $S \neq \emptyset, V$, and let $\bar{S}=V-S$ be the complement.

- Vertex Cheeger constant (restricted):

$$
g^{\prime}(G):=\min _{|S| \leq n / 2} \frac{|\delta(S)|}{|S|} .
$$

Here the vertex boundary $\delta(S):=N(S)-S$ is the set of neighbors of S not including S itself. This is the most important measure.

- Vertex Cheeger constant (unrestricted):

$$
g(G):=\min _{S} \frac{|\delta(S)|}{\min (|S|,|\bar{S}|)} .
$$

- Edge Cheeger constant:

$$
\begin{aligned}
h(G) & :=\min _{|S| \leq n / 2} \frac{|E(S, \bar{S})|}{|S|} \\
& =\min _{S} \frac{|E(S, \bar{S})|}{\min (|S|,|\bar{S}|)} .
\end{aligned}
$$

Here the edge boundary $E(S, \bar{S})$ is the set of edges between S and \bar{S}. In this case there is no difference between the restricted and unrestricted version, since $E(\bar{S}, S)=E(S, \bar{S})$.

1. We compute these measures for some of our favorite graphs. In each case $g(G)=g^{\prime}(G)$, except for the complete graph K_{n} with n odd, in which case $g(G)=1$ and $g^{\prime}(G)=\frac{n+1}{n-1}=1+\frac{2}{n-1}$.

Graph	S for g	$g(G)$	S for h	$h(G)$	$\kappa_{V}(G)$	$\kappa_{E}(G)$
Cycle C_{n}						
n even	$\frac{n}{2}$ interval	$\frac{4}{n}$	$\frac{n}{2}$ interval	$\frac{4}{n}$	2	2
n odd	$\frac{n-1}{2}$ interval	$\frac{4}{n-1}$	$\frac{n-1}{2}$ interval	$\frac{4}{n-1}$	2	2
Complete K_{n} n even n odd	$\|S\|=\frac{n}{2}$	1	$\|S\|=\frac{n}{2}$	$\frac{n}{2}$	$n-1$	$n-1$
$\|S\|=\frac{n+1}{2}$	1	$\|S\|=\frac{n-1}{2}$	$\frac{n+1}{2}$	$n-1$	$n-1$	
Tetrahedron K_{4}		1.0		2.0	3	3
Octahedron	triangle	$\frac{3}{3}=1.0$	triangle	$\frac{6}{3}=2.0$	4	4
Icosahedron	$N(v)$	$\frac{5}{6}=0.83$	$N(v)$	$\frac{10}{6}=1.67$	5	5
Cube	$N(v)$	$\frac{3}{4}=0.75$	square	$\frac{4}{4}=1.0$	3	3
Dodecahedron	$N($ pentagon $)$	$\frac{5}{10}=0.5$	$N(N(v))$	$\frac{6}{10}=0.6$	3	3

Here $N(S)$ means S together with its neighbors. Note that $\kappa_{V}(G)=\kappa_{E}(G)=$ $d(v)$ in each case, so these are governed only by the degree at each vertex. However $g(G)$ and $h(G)$ suggest that globally, the icosahedron is more connected than the cube, which is more connected that the dodecahedron.
2. Consider the wrapped grid graph $G_{m}=C_{m} \times C_{m}$, consisting of m^{2} vertices $(i, j) \bmod m$ having the 4 neighbors $(i \pm 1, j),(i, j \pm 1)$. As $m \rightarrow \infty$, the computation of the minimizing set S with

$$
g^{\prime}(m):=g^{\prime}\left(G_{m}\right)=\frac{|\delta(S)|}{|S|}
$$

approximates the isomperimetric problem in plane geometry. That is, find the plane region $R \subset \mathbf{R}^{2}$ with a fixed area $A=A(R)$ that has the minimal perimeter $P(R)$.

For a given shape R, dilating by a scalar $t \geq 0$ multiplies the perimeter by t and the area by t^{2}, so we have a formlua:

$$
P(t R)=i(R) A(t R)^{1 / 2}
$$

where $i(R)$ is the isoperimetric constant of R. The optimal shape will have the smallest isoperimetric constant.

If the boundary curve of R is parametrized by $(x(t), y(t))$ for $a \leq t \leq b$, the usual perimeter is:

$$
P(R):=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t .
$$

The optimal shape in this case is $R=C$, the circle defined by: $\sqrt{x^{2}+y^{2}} \leq r$ for $r=\sqrt{A / \pi}$. This gives:

$$
P(C)=2 \sqrt{\pi} A(R)^{1 / 2} \cong 3.5 A(R)^{1 / 2}
$$

However, in our discrete case, the vertex boundary approaches a different measure of perimeter from the usual geometric one:

$$
P_{V}(R):=\int_{a}^{b} \max \left(\left|x^{\prime}(t)\right|,\left|y^{\prime}(t)\right|\right) d t
$$

In this case, the minimum P_{V} for a given area is attained by $R=D$ a diamond (rotated square) defined by: $|x|+|y| \leq r$ for $r=\sqrt{A / 2}$. This gives:

$$
P_{V}(D)=2 \sqrt{2} A(D)^{1 / 2} \cong 2.8 A(D)^{1 / 2} ;
$$

whereas the circle gives:

$$
P_{V}(C)=4 \sqrt{\frac{2}{\pi}} A(C)^{1 / 2} \cong 3.2 A(C)^{1 / 2}
$$

That is, $i_{V}(C) \cong 4.2$, about 10% below $i(C) \cong 4.5$
To compute $g^{\prime}(m)$ we set $A=n / 2=m^{2} / 2$, so that for the optimal shape $R=D$,

$$
g^{\prime}(m) \cong \frac{P_{V}(D)}{A(D)}=\frac{i_{V}(D)}{\left(m^{2} / 2\right)^{1 / 2}}=\frac{\sqrt{2} i_{V}(D)}{m}=4 m^{-1}
$$

Using the non-optimal $R=C$ gives:

$$
g^{\prime}(m) \leq \frac{\sqrt{2} i_{V}(C)}{m}=\frac{8}{\sqrt{\pi}} m^{-1} \cong 4.5 m^{-1}
$$

