Math 881 HW 2/10 Solutions Spring 2006

We have defined several measures of graph connectivity which are less sen-
sitive to small-scale phenomena than the classical connectivity kv (G) or
kr(G), and which better capture the features we seek in a robustly con-
nected network. Let G = (V,E) be a graph with n vertices. Let S C V be
any set of vertices, S # (0, V, and let S =V — S be the complement.

o Vertex Cheeger constant (restricted):
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Here the vertex boundary §(S) := N(S) — S is the set of neighbors of
S not including S itself. This is the most important measure.

o Vertex Cheeger constant (unrestricted):
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Here the edge boundary E(S, S) is the set of edges between S and S. In

this case there is 10 difference_between the restricted and unrestricted
version, since E(S,S) = E(S,5).



1. We compute these measures for some of our favorite graphs. In each case
9(G) = ¢'(G), except for the complete graph K, with n odd, in which case
g(G)zlandg’(G):Z—ﬂzl—l—%.

Graph S for g 9(G) S for h h(G) |kv(G) kr(Q)
Cycle C,
n even 5 interval % 5 interval % 2
n odd ”T_l interval % ”T_l interval ﬁ 2
Complete K,
n even S| =% 1 S| =% 3 n—1 n—1
n odd 15| =2t 1 15| = 252 nl n—1 n—1
Tetrahedron K, 1.0 2.0 3
Octahedron triangle g =1.0 triangle g =20 4
Icosahedron N(v) 2=0.83 N(v) 2=167| 5
Cube N(v) 2 =0.75 square 1=1.0 3
Dodecahedron | N(pentagon) < =05| N(N(v)) =06 3

Here N(S) means S together with its neighbors. Note that ky (G) = kg(G) =
d(v) in each case, so these are governed only by the degree at each vertex.
However ¢(G) and h(G) suggest that globally, the icosahedron is more con-
nected than the cube, which is more connected that the dodecahedron.

2. Consider the wrapped grid graph G,, = C,, x C,, , consisting of m? ver-
tices (i,7) mod m having the 4 neighbors (i£1,j), (i, j£1). As m — oo,
the computation of the minimizing set S with
g (m) = g'(G,) = 25N
S|

approximates the isomperimetric problem in plane geometry. That is, find
the plane region R C R? with a fixed area A = A(R) that has the minimal
perimeter P(R).




For a given shape R, dilating by a scalar ¢ > 0 multiplies the perimeter
by t and the area by t2, so we have a formlua:

P(tR) = i(R) A(tR)"/?

where i(R) is the isoperimetric constant of R. The optimal shape will have
the smallest isoperimetric constant.

If the boundary curve of R is parametrized by (z(t),y(t)) for a <t < b,
the usual perimeter is:

P(R) = / VIR F )2 dt.

The optimal shape in this case is R = C', the circle defined by: /22 +y2 < r
for r = \/A/m. This gives:
P(C) =21 A(R)Y? = 3.5 A(R)"2.

However, in our discrete case, the vertex boundary approaches a different
measure of perimeter from the usual geometric one:
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In this case, the minimum Py for a given area is attained by R = D a
diamond (rotated square) defined by: |z| + |y| < r for r = y/A/2. This
gives:

Py(D) =2V2 A(D)"* = 2.8 A(D)"/?;
whereas the circle gives:
Py (C) = 4\/2 A(C)V? =32 A(C)V2.

That is, iy (C) = 4.2, about 10% below i(C') = 4.5
To compute g'(m) we set A =n/2 =m?/2, so that for the optimal shape
R=D,
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Using the non-optimal R = C gives:
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