Math 881

Proposition (Hall Matching) Let $G = (A \cup B, E)$ be a bipartite graph satisfying Hall's Condition: for any subset $A' \subset A$, we have $|A'| \leq |N(A')|$. Then there exists a matching from A to B.

Here $N(A') \subset B$ denotes the neighbor set of A'. A matching from A to B means a set of edges $M \subset E$ such that every $a \in A$ lies on exactly one edge of M, and every $b \in B$ lies on at most one edge of M.

Proof: We first convert G into a flow network \hat{G} whose directed graph includes G with all edges oriented from A to B; an extra source vertex s with edges $s \rightarrow a$ for all $a \in A$; and an extra sink vertex t with edges $b \rightarrow t$ for all $b \in B$. Also we set the capacity of each edge to c = 1.

A partial matching M' from $A' \subset A$ to B clearly corresponds to a flow f in \hat{G} : to each edge $(a \rightarrow b) \in M'$ there corresponds f(s, a) = f(a, b) = f(b, t) = 1, with all other f(x, y) = 0. Furthermore, |A'| = Flow(f). Thus a matching of a maximal subset $A' \subset A$ corresponds to a maximal flow in \hat{G} .

Now, by the Max-Flow/Min-Cut Theorem, this is the same as the minimum capacity of a cut (S, T):

$$\min_{(S,T)} \operatorname{Cap}(S,T) = \max_{A'} |A'|.$$

(Recall that a pair of disjoint vertex sets (S, T) is a cut if $s \in S$, $t \in T$ and $S \cup T = A \cup B \cup \{s, t\}$. Also, $\operatorname{Cap}(S, T) := |E(S, T)|$, the number of directed edges from S to T.) Thus, a complete matching (A' = A) is possible for G exactly when the minimal capacity for a cut of \hat{G} is n := |A|.

Let (S,T) be any cut, and denote $S_A := S \cap A$, etc., so that $A = S_A \cup T_A$ and $B = S_B \cup T_B$. The capacity is:

$$Cap(S,T) = |T_A| + |S_B| + |E(S_A,T_B)|.$$

Now, $N(S_A) \cap S \subset S_B$, so $|S_B| \ge |N(S_A) \cap S|$. Also, every vertex of $N(S_A) \cap T$ corresponds to at least one edge in $E(S_A, T_B)$, so $|E(S_A, T_B)| \ge |N(S_A) \cap T|$. Thus we have:

$$Cap(S,T) \ge |T_A| + |N(S_A) \cap S| + |N(S_A) \cap T| = |T_A| + |N(S_A)|.$$

Applying Hall's Condition $|N(S_A)| \ge |S_A|$ gives:

$$Cap(S,T) \ge |T_A| + |S_A| = |A| = n.$$

Thus any cut has capacity $\geq n$, and a minimal cut has capacity exactly n, as desired.

Here are some auxiliary results that some people used in their proofs.

Claim 1: Suppose a cut (S,T) of \hat{G} has an edge $a \rightarrow b$ with $a \in S_A$, $b \in T_B$; then $(S \cup \{a\}, T - \{b\})$ is a cut with smaller or equal capacity. *Proof:*

$$Cap(S,T) = |T_A| + |S_B| + |E(S_A, T_B)|,$$

$$Cap(S \cup \{a\}, T - \{b\}) = |T_A| + |S_B| + 1 + |E(S_A, T_B)| - |E(S_A, b)|$$

$$\leq Cap(S,T),$$

since $|E(S_A, b)| \ge 1$.

We can apply this fact repeatedly to find a minimal cut with $E(S_A, T_B) = \emptyset$, which simplifies the capacity formula to: $\operatorname{Cap}(S, T) = |S_A| + |T_B|$.

Claim 2: For a general bipartite graph, the Augmenting Algorithm produces a cut (S, T) with $E(T_A, S_B) = \emptyset$.

FALSE! Here is a counterexample: Let |A| = 3, |B| = 2, and

$$E = \{(a_1, b_1), (a_1, b_2), (a_2, b_2), (a_3, b_2)\}.$$

Take the max flow corresponding to the matching $M = \{(a_1, b_1), (a_2, b_2)\}$. Then the corresponding cut is:

$$S = \{s, a_2, a_3, b_2\}$$
, $T = \{a_1, b_1, t\}$.

Nevertheless, $(a_1, b_2) \in E(T_A, S_B)$.