Proposition (Hall Matching) Let $G=(A \cup B, E)$ be a bipartite graph satisfying Hall's Condition: for any subset $A^{\prime} \subset A$, we have $\left|A^{\prime}\right| \leq\left|N\left(A^{\prime}\right)\right|$. Then there exists a matching from A to B.

Here $N\left(A^{\prime}\right) \subset B$ denotes the neighbor set of A^{\prime}. A matching from A to B means a set of edges $M \subset E$ such that every $a \in A$ lies on exactly one edge of M, and every $b \in B$ lies on at most one edge of M.

Proof: We first convert G into a flow network \hat{G} whose directed graph includes G with all edges oriented from A to B; an extra source vertex s with edges $s \rightarrow a$ for all $a \in A$; and an extra sink vertex t with edges $b \rightarrow t$ for all $b \in B$. Also we set the capacity of each edge to $c=1$.

A partial matching M^{\prime} from $A^{\prime} \subset A$ to B clearly corresponds to a flow f in \hat{G} : to each edge $(a \rightarrow b) \in M^{\prime}$ there corresponds $f(s, a)=f(a, b)=$ $f(b, t)=1$, with all other $f(x, y)=0$. Furthermore, $\left|A^{\prime}\right|=\operatorname{Flow}(f)$. Thus a matching of a maximal subset $A^{\prime} \subset A$ corresponds to a maximal flow in \hat{G}.

Now, by the Max-Flow/Min-Cut Theorem, this is the same as the minimum capacity of a cut (S, T) :

$$
\min _{(S, T)} \operatorname{Cap}(S, T)=\max _{A^{\prime}}\left|A^{\prime}\right|
$$

(Recall that a pair of disjoint vertex sets (S, T) is a cut if $s \in S, t \in T$ and $S \cup T=A \cup B \cup\{s, t\}$. Also, $\operatorname{Cap}(S, T):=|E(S, T)|$, the number of directed edges from S to T.) Thus, a complete matching $\left(A^{\prime}=A\right)$ is possible for G exactly when the minimal capacity for a cut of \hat{G} is $n:=|A|$.

Let (S, T) be any cut, and denote $S_{A}:=S \cap A$, etc., so that $A=S_{A} \cup T_{A}$ and $B=S_{B} \cup T_{B}$. The capacity is:

$$
\operatorname{Cap}(S, T)=\left|T_{A}\right|+\left|S_{B}\right|+\left|E\left(S_{A}, T_{B}\right)\right|
$$

Now, $N\left(S_{A}\right) \cap S \subset S_{B}$, so $\left|S_{B}\right| \geq\left|N\left(S_{A}\right) \cap S\right|$. Also, every vertex of $N\left(S_{A}\right) \cap T$ corresponds to at least one edge in $E\left(S_{A}, T_{B}\right)$, so $\left|E\left(S_{A},, T_{B}\right)\right| \geq\left|N\left(S_{A}\right) \cap T\right|$. Thus we have:

$$
\begin{aligned}
\operatorname{Cap}(S, T) & \geq\left|T_{A}\right|+\left|N\left(S_{A}\right) \cap S\right|+\left|N\left(S_{A}\right) \cap T\right| \\
& =\left|T_{A}\right|+\left|N\left(S_{A}\right)\right|
\end{aligned}
$$

Applying Hall's Condition $\left|N\left(S_{A}\right)\right| \geq\left|S_{A}\right|$ gives:

$$
\operatorname{Cap}(S, T) \geq\left|T_{A}\right|+\left|S_{A}\right|=|A|=n
$$

Thus any cut has capacity $\geq n$, and a minimal cut has capacity exactly n, as desired.

Here are some auxilliary results that some people used in their proofs.
Claim 1: Suppose a cut (S, T) of \hat{G} has an edge $a \rightarrow b$ with $a \in S_{A}, b \in T_{B}$; then $(S \cup\{a\}, T-\{b\})$ is a cut with smaller or equal capacity.
Proof:

$$
\begin{aligned}
\operatorname{Cap}(S, T) & =\left|T_{A}\right|+\left|S_{B}\right|+\left|E\left(S_{A}, T_{B}\right)\right|, \\
\operatorname{Cap}(S \cup\{a\}, T-\{b\}) & =\left|T_{A}\right|+\left|S_{B}\right|+1+\left|E\left(S_{A}, T_{B}\right)\right|-\left|E\left(S_{A}, b\right)\right| \\
& \leq \operatorname{Cap}(S, T),
\end{aligned}
$$

since $\left|E\left(S_{A}, b\right)\right| \geq 1$.
We can apply this fact repeatedly to find a minimal cut with $E\left(S_{A}, T_{B}\right)=\emptyset$, which simplifies the capacity formula to: $\operatorname{Cap}(S, T)=\left|S_{A}\right|+\left|T_{B}\right|$.

Claim 2: For a general bipartite graph, the Augmenting Algorithm produces a cut (S, T) with $E\left(T_{A}, S_{B}\right)=\emptyset$.

FALSE! Here is a counterexample: Let $|A|=3,|B|=2$, and

$$
E=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{2}\right)\right\} .
$$

Take the max flow corresponding to the matching $M=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\}$. Then the corresponding cut is:

$$
S=\left\{s, a_{2}, a_{3}, b_{2}\right\} \quad, \quad T=\left\{a_{1}, b_{1}, t\right\} .
$$

Nevertheless, $\left(a_{1}, b_{2}\right) \in E\left(T_{A}, S_{B}\right)$.

