We consider a probability space of k-regular bipartite multi-graphs on $n+n$ vertices $V=V_{+} \cup V_{-}$. We construct such a graph from $\pi_{1}, \ldots, \pi_{k} \in \operatorname{Perm}(n)$, permutations of $\{1, \ldots, n\}$ chosen independently with uniform probablity. The corresponding multi-graph $G^{\prime \prime}:=G^{\prime \prime}\left(\pi_{1}, \ldots, \pi_{k}\right)$ is defined by the neighbor sets $N\left(i_{+}\right):=\left\{\pi_{1}(i)_{-}, \ldots, \pi_{k}(i)_{-}\right\}$.

Proposition For $k \geq 7$, the graph $G^{\prime \prime}$ is a $\frac{1}{2}$-expander with probability 1 :

$$
\mathbb{P}\left(c^{\prime}\left(G^{\prime \prime}\right) \geq \frac{1}{2}\right) \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty
$$

where c^{\prime} means the bipartite expander constant. That is, for almost any $G^{\prime \prime}$ chosen as above, and any $S \subset V_{-}$with $|S| \leq \frac{n}{2}$, we have $|N(S)| \geq\left(1+\frac{1}{2}\right)|S|$.

Proof: We aim to show:

$$
\mathbb{P}\left(c^{\prime}\left(G^{\prime \prime}\right)<\frac{1}{2}\right) \xrightarrow{? ?} 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Now, the graph $G^{\prime \prime}$ fails to be a $\frac{1}{2}$-expander if there exists $S \subset V_{+}$and $T \subset V_{-}$ such that:

$$
|S|=s \leq \frac{1}{2} n \quad, \quad|T|=\left\lfloor\frac{3}{2} s\right\rfloor \quad, \quad N(S) \subset T
$$

The last condition means precisely that $\pi_{1}(S), \ldots, \pi_{k}(S) \subset T$.
Fixing S, T, we compute the probability of uniformly choosing a permutation π with $\pi(S) \subset T$:

$$
\mathbb{P}(\pi(S) \subset T)=\frac{t(t-1) \cdots(t-s+1) \cdot(n-s)!}{n!}=\frac{t!(n-s)!}{s!n!}
$$

where $t:=\left\lfloor\frac{3}{2} s\right\rfloor$. Since π_{1}, \ldots, π_{k} are chosen independently, we have:

$$
\mathbb{P}\left(\pi_{1}(S), \ldots, \pi_{k}(S) \subset T\right)=\left[\frac{t!(n-s)!}{s!n!}\right]^{k}
$$

Letting S, T run over all possible subsets gives:

$$
\begin{aligned}
\mathbb{P}\left(c^{\prime}\left(G^{\prime \prime}\right)<\frac{1}{2}\right) & =\mathbb{P}\left(\exists S, T \text { s.t. } \pi_{1}(S), \ldots, \pi_{k}(S) \subset T\right) \\
& \leq \sum_{s=1}^{n / 2}\binom{n}{s}\binom{n}{t}\left[\frac{t!(n-s)!}{s!n!}\right]^{k}
\end{aligned}
$$

Denoting the summand as $R(s)$, we thus have:

$$
\mathbb{P}\left(c^{\prime}\left(G^{\prime \prime}\right)<\frac{1}{2}\right) \leq \sum_{s=1}^{n / 3} R(s)+\sum_{s=n / 3}^{n / 2} R(s)
$$

and we must show that each of the above summations tends to zero.
Consider the summation over $s \leq \frac{1}{3} n$. For an even value of s we have $\left\lfloor\frac{3}{2}(s+1)\right\rfloor=\frac{3}{2} s+1$ and:

$$
\begin{aligned}
\frac{R(s)}{R(s+1)} & =\frac{s+1}{n-\frac{3}{2} s}\left[\frac{n-s}{\frac{3}{2} s+1}\right]^{k-1} \\
& =\frac{s+1}{\frac{3}{2} s+1} \cdot \frac{n-s}{n-\frac{3}{2} s} \cdot\left[\frac{n-s}{\frac{3}{2} s+1}\right]^{k-2} \\
& \geq \frac{2}{3} \cdot 1 \cdot\left[\frac{4}{3}\right]^{k-2} \geq \frac{2}{3}\left[\frac{4}{3}\right]^{2}>1
\end{aligned}
$$

since $f(s):=(n-s) /\left(\frac{3}{2} s+1\right)$ is increasing for fixed n and $s \leq \frac{1}{3} n$. (Also recall $k \geq 4$.) We can make a similar calculation for odd values of s. Hence $R(s)$ is decreasing over the interval $1 \leq s \leq \frac{1}{3} n$, and:

$$
\sum_{s=1}^{n / 3} R(s) \leq \frac{1}{3} n R(1)=\frac{1}{3} n^{3-k} \rightarrow 0
$$

since $k \geq 4$.
Finally, consider the summation over the interval $\frac{1}{3} n \leq s \leq \frac{1}{2} n$. For large n, the value s is also large, so we may approximate $R(s)$ using Stirling's formula:

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

in which the percentage error approaches zero as $n \rightarrow \infty$. For $0<\alpha<1$ and $\beta:=1-\alpha$, we compute:

$$
\binom{n}{\alpha n} \sim \frac{1}{\sqrt{2 \pi n}} \alpha^{-\alpha n-\frac{1}{2}} \beta^{-\beta n-\frac{1}{2}},
$$

and

$$
\binom{n}{s}\binom{n}{t} \leq\binom{ n}{\frac{1}{2} n}^{2} \sim \frac{2^{2 n}}{8 \pi n}
$$

Furthermore, for fixed n and $s=\alpha n$,

$$
\begin{gathered}
Q(s):=\frac{t!(n-s)!}{s!n!} \sim 3^{\frac{1+3 \alpha n}{2}} \beta^{\beta n+\frac{1}{2}}\left(\frac{1}{2} \alpha\right)^{\alpha n}, \\
\log Q(s)=\alpha n \log \left(\frac{3 \sqrt{3}}{2} \frac{\alpha}{1-\alpha}\right)+1 / 2 \log (1-\alpha)+\log \sqrt{3} \\
\frac{d}{d \alpha} \log Q(s)=n\left(\log \left(\frac{3 \sqrt{3}}{2} \frac{\alpha}{1-\alpha}\right)+\frac{1}{1-\alpha}\right)-\frac{1}{2(1-\alpha)}
\end{gathered}
$$

and it is easily seen that this is positive for large n and $\frac{1}{3} \leq \alpha \leq \frac{1}{2}$. Hence $\log Q(s)$ is increasing, and so is $Q(s)$. Thus:

$$
\begin{aligned}
\sum_{s=n / 3}^{n / 2} R(s) & \leq \sum_{s=n / 3}^{n / 2} \frac{2^{2 n}}{8 \pi n} Q(s)^{k} \\
& \leq \frac{1}{6} n \frac{2^{2 n}}{8 \pi n} Q\left(\frac{n}{2}\right) \\
& \sim c 4^{n}\left(\frac{3}{4}\right)^{\frac{3}{4}} k n \\
& =c\left(\frac{3^{3 k / 4}}{4^{3 k / 4-1}}\right)^{n}
\end{aligned}
$$

The last quantity in parentheses is <1 only for $k \geq 7$. Perhaps there is a better estimate that works for $k \geq 4$?

