Math 881 HW 3/17 Spring 2006

We consider a probability space of k-regular bipartite multi-graphs on n +n
vertices V = VL, UV_ . We construct such a graph from 7y, ... ,m; € Perm(n),
permutations of {1,... n} chosen independently with uniform probablity.
The corresponding multi-graph G” := G"(m, ... ,m) is defined by the neigh-
bor sets N(iy ) :={m(i)_,... ,m(i)_}.

Proposition For k > 7, the graph G is a %—expander with probability 1:
P(d(G")>3)—1 as n— oo,

where ¢’ means the bipartite expander constant. That is, for almost any G”
chosen as above, and any S C V_ with |S] < %, we have |[N(S)| > (143)|5].

Proof: We aim to show:
P(d(G") < %) 20 as n—oo.

Now, the graph G” fails to be a %—expander if there exists S C V, and T C V_
such that:
Sl=s<in . [TI=|3s] . NS CT.

The last condition means precisely that m(S),... ,m(S) C T.
Fixing S, T, we compute the probability of uniformly choosing a permu-
tation = with =(S) C T":
tit—=1)---(t—s+1) - (n—s)!  t!(n—s)!

P(r(S) cT) = n!  slnl

where ¢t := [2s|. Since m,...,m are chosen independently, we have:

sln!

tl (n—s)N1"
P(m(S),..., m(S)CT)=|———| .
Letting S, T run over all possible subsets gives:
P(/(G")<3) = P(3S,Tst.m(S),..., m(S)CT)
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Denoting the summand as R(s), we thus have:

n/3 n/2

P(c(G")<%) < DY R(s) + Y R(s),

s=n/3



and we must show that each of the above summations tends to zero.
Consider the summation over s < én For an even value of s we have
[3(s+1)] =25+ 1 and:
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since f(s) := (n—s)/(3s+1) is increasing for fixed n and s < in. (Also recall
k > 4.) We can make a similar calculation for odd values of s. Hence R(s)
is decreasing over the interval 1 < s < %n, and:

> 1,

n/3
ZR(S) < inR(1) = n** — 0,
s=1

since k > 4.
Finally, consider the summation over the interval %n < s < %n For
large n, the value s is also large, so we may approximate R(s) using Stirling’s

formula: nAn
nl ~ V2mn (—) ,

e
in which the percentage error approaches zero as n — oo. For 0 < a < 1
and (:=1 — «, we compute:

(n) ~— a~m=y g0y
an V2T
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Furthermore, for fixed n and s = an,

and

. t! (n—s)! 143an ﬁn—i—l 1 an
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log Q(s) = an log <T\/_ %) +1/2log(1—a) +1log V3,

d 3V3 1 1
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and it is easily seen that this is positive for large n and % <a<
log Q(s) is increasing, and so is Q(s). Thus:
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The last quantity in parentheses is < 1 only for £ > 7. Perhaps there is a
better estimate that works for k > 47



