
Math 881 HW 3/17 Spring 2006

We consider a probability space of k-regular bipartite multi-graphs on n + n
vertices V = V+∪V− . We construct such a graph from π1, . . . , πk ∈ Perm(n),
permutations of {1, . . . , n} chosen independently with uniform probablity.
The corresponding multi-graph G′′ := G′′(π1, . . . , πk) is defined by the neigh-
bor sets N(i+) := {π1(i)− , . . . , πk(i)−} .

Proposition For k ≥ 7, the graph G′′ is a 1
2
-expander with probability 1:

P
(
c′(G′′) ≥ 1

2

)→ 1 as n → ∞ ,

where c′ means the bipartite expander constant. That is, for almost any G′′

chosen as above, and any S ⊂ V− with |S| ≤ n
2

, we have |N(S)| ≥ (1+ 1
2
)|S| .

Proof: We aim to show:

P
(
c′(G′′) < 1

2

) ??→ 0 as n → ∞ .

Now, the graph G′′ fails to be a 1
2
-expander if there exists S ⊂ V+ and T ⊂ V−

such that:
|S| = s ≤ 1

2
n , |T | = �3

2
s	 , N(S) ⊂ T .

The last condition means precisely that π1(S), . . . , πk(S) ⊂ T .
Fixing S, T , we compute the probability of uniformly choosing a permu-

tation π with π(S) ⊂ T :

P( π(S) ⊂ T ) =
t(t−1) · · · (t−s+1) · (n−s)!

n!
=

t! (n−s)!

s! n!
,

where t := �3
2
s	 . Since π1, . . . , πk are chosen independently, we have:

P( π1(S), . . . , πk(S) ⊂ T ) =

[
t! (n−s)!

s! n!

]k

.

Letting S, T run over all possible subsets gives:

P
(
c′(G′′) < 1

2

)
= P( ∃S, T s.t. π1(S), . . . , πk(S) ⊂ T )

≤
n/2∑
s=1

(
n

s

)(
n

t

)[
t! (n−s)!

s! n!

]k

.

Denoting the summand as R(s), we thus have:

P
(
c′(G′′) < 1

2

) ≤
n/3∑
s=1

R(s) +

n/2∑
s=n/3

R(s) ,



and we must show that each of the above summations tends to zero.
Consider the summation over s ≤ 1

3
n. For an even value of s we have

�3
2
(s+1)	 = 3

2
s + 1 and:

R(s)

R(s+1)
=

s+1

n−3
2
s

[
n−s
3
2
s+1

]k−1

=
s+1
3
2
s+1

· n−s

n−3
2
s
·
[

n−s
3
2
s+1

]k−2

≥ 2

3
· 1 ·

[
4

3

]k−2

≥ 2

3

[
4

3

]2

> 1 ,

since f(s) := (n−s)/(3
2
s+1) is increasing for fixed n and s ≤ 1

3
n. (Also recall

k ≥ 4.) We can make a similar calculation for odd values of s. Hence R(s)
is decreasing over the interval 1 ≤ s ≤ 1

3
n, and:

n/3∑
s=1

R(s) ≤ 1
3
n R(1) = 1

3
n3−k → 0 ,

since k ≥ 4.
Finally, consider the summation over the interval 1

3
n ≤ s ≤ 1

2
n . For

large n, the value s is also large, so we may approximate R(s) using Stirling’s
formula:

n! ∼
√

2πn
(n

e

)n

,

in which the percentage error approaches zero as n → ∞. For 0 < α < 1
and β := 1 − α, we compute:(

n

αn

)
∼ 1√

2πn
α−αn− 1

2 β−βn− 1
2 ,

and (
n

s

) (
n

t

)
≤
(

n
1
2
n

)2

∼ 22n

8πn

Furthermore, for fixed n and s = αn ,

Q(s) :=
t! (n−s)!

s! n!
∼ 3

1+3αn
2 ββn+ 1

2

(
1
2
α
)αn

,

log Q(s) = αn log

(
3
√

3

2

α

1−α

)
+ 1/2 log(1−α) + log

√
3 ,

d

dα
log Q(s) = n

(
log

(
3
√

3

2

α

1−α

)
+

1

1−α

)
− 1

2(1−α)
,



and it is easily seen that this is positive for large n and 1
3
≤ α ≤ 1

2
. Hence

log Q(s) is increasing, and so is Q(s). Thus:

∑n/2
s=n/3 R(s) ≤

n/2∑
s=n/3

22n

8πn
Q(s)k

≤ 1
6
n

22n

8πn
Q(n

2
)

∼ c 4n
(

3
4

)3
4
kn

= c

(
33k/4

43k/4− 1

)n

The last quantity in parentheses is < 1 only for k ≥ 7 . Perhaps there is a
better estimate that works for k ≥ 4 ?


