
Regular circle packingsL�aszl�o Szab�oE�otv�os Lor�and UniversityDepartment of GeometryR�ak�oczi �ut 5H-1088 BudapestHungaryAugust 2, 20001. IntroductionA collection of nonoverlapping circles in the plane is called a packing. Twocircles are said to be neighbours if they possess a boundary point in com-mon. A packing is called a k-neighbour packing if each circle has exactly kneighbours and it is called connected if the union of the circles is connected.In this paper we consider the following problem. For which natural num-bers n and k can we construct a connected k-neighbour packing consistingof exactly n circles. The following theorem answers our question.Theorem 1. There exists a k-neighbour packing of n circles if and only ifone of the following holds:(1) k = 1 and n = 2,(2) k = 2 and n > 3,(3) k = 3 and n > 4, where n is even,(4) k = 4 and n > 6, where n 6= 7,(5) k = 5 and n > 12, where n 6= 14 and n is even.For some additional results concerning packings with given number ofneighbours we refer the reader to the survey paper [3] by G. Fejes T�oth andW. Kuperberg. 1



2 L�aszl�o Szab�oWith a packing of circles one can associate a planar graph, called the nerveof the packing, whose vertices are the centres of the circles and two verticesare joined by an edge if the corresponding circles are neighbours. Accordingto a celebrated theorem of Koebe [6], rediscovered by Andreev [1, 2] andThurston [8], every planar graph is the nerve graph of some circle packing.Therefore, since the nerve graph of a k-neighbour packing is k-regular, ourtheorem is equivalent with the proposition that a connected k-regular planargraph with n vertices exists for and only for pairs of k and n satisfying oneof the conditions (1)-(5) in Theorem 1. To my knowledge, this result is notexplicitly stated in the literature. On the other hand, as Stanislav Jendrolkindly pointed out to me, it follows from di�erent known results. It is easyto see that n has to be even if k is odd since the number of vertices withodd degree is even in any graph. Furthermore, as a trivial consequence ofEuler's theorem, a simple planar graph with n vertices has at most 3n � 6edges. Since in a k-regular planar graph with n vertices the number of edgesis kn2 we obtain n(6� k) > 12, which shows that k 6 5 and n > 4, if k = 3,n > 6, if k = 4, n > 12, if k = 5. A theorem of Malkevitch [7] impliesthat there are no 4-regular and 5-regular planar graphs having only trianglesand exactly one quadrangle, i.e. there are no 4-regular and 5-regular planargraphs with n = 7 and n = 14 vertices, respectively. Thus relations (1)-(5)form necessary conditions for the existence of a connected k-regular planargraph with n vertices. The fact that these conditions are also su�cient followsfrom di�erent constructions given by Gr�unbaum [5] p.282 and Fisher [4].In this paper we give a simple alternative proof to the special cases k = 4,n = 7 and k = 5, n = 14 of Malkevitch's theorem. We also prove the existencepart of our theorem by giving direct constructions of circle packings for allpairs k and n described by relations (1)-(5).2. Exclusion of the cases k = 4, n = 7 andk = 5, n = 14As we have already pointed out, �rst we give a simple proof for two specialcases of Malkevitch's theorem.Lemma 1. There is no 4-regular planar graph with 7 vertices.Proof. For a contradiction assume that there exists a 4-regular planar graphG with 7 vertices. From Euler's formula it can be shown that G divides theplane into nine regions, eight triangles and one quadrangle. Without loss ofgenerality we may assume that the quadrangle (a; b; c; d) is a bounded region.



Regular circle packings 3Then neither (a; c) nor (b; d) can be an edge of G. In fact, if, say, (a; c) isan edge of G, the remaining three vertices e, f and g must be interior to theregions (a; c; b) and (a; c; d). If all three vertices are interior to one region,the other region is left with a vertex of degree two. On the other hand, iftwo vertices are interior to one region, the vertex in the other region can bejoined to at most three boundary vertices of its region.Now, we show that the only 2-paths from a to c pass through either bor d. For a contradiction suppose that ((a; e); (e; c)) is a 2-path from a to cand e is not equal to b or d. If the vertices f and g are in one of the regions(a; e; c; b) and (a; e; c; d), then the other region is left with a vertex of degreetwo. On the other hand, if the vertex f is in (a; e; c; b) and g is in (a; e; c; d),then f must be joined to all of the vertices a, e, c and b, and g must be joinedto all of the vertices a, e, c and d. This leaves a and c with incidences of �ve.Similarly, we can show that the only 2-paths from b to d pass through eithera or c.Finally, consider the four "empty" triangles bounding the edges of thequadrangle (a; b; c; d) with respective third vertices e, f , g, h. The previousobservations show that e, f , g, h must all be distinct, a contradiction.Lemma 2. There is no 5-regular planar graph with 14 vertices.Proof. For a contradiction assume that there exists a 5-regular planar graphG with 14 vertices. From Euler's formula it can be shown that G divides theplane into twenty-three regions, twenty-two triangles and one quadrangle.Without loss of generality we may assume that the quadrangle (a; b; c; d) isa bounded region.The following elementary observation will be essential in our proof. Sup-pose that the region (u; v; : : : ; z) contains s vertices. Then the total numberof free degrees of u, v, : : : , z must be at least 5 if s = 1, at least 8 if s = 2,at least 9 if s = 3, at least 8 if s = 4, and at least 7 if s = 5.First, we prove that neither (a; c) nor (b; d) can be an edge of G. In fact,if (a; c) is an edge of G, the remaining ten vertices must be interior to theregions (a; c; b) and (a; c; d). Since the free degree of b is three and the totalnumber of free degrees of the vertices a, b, c is seven, the region (a; c; b)contains at least �ve vertices. Similarly, the region (a; c; d) also contains atleast �ve vertices. But the total number of free degrees of the vertices a, b, c,d is only ten, thus it is impossible to arrange �ve-�ve vertices in the regions(a; c; b) and (a; c; d).Now, we show that the only 2-paths from a to c pass through either b or d.For a contradiction suppose that ((a; e); (e; c)) is a 2-path from a to c and e isnot equal to b or d. Then the remaining nine vertices must be interior to theregions (a; e; c; b) and (a; e; c; d). Since the free degrees of b and d are three,



4 L�aszl�o Szab�othe regions (a; e; c; b) and (a; e; c; d) contain at least three-three vertices. Wehave two di�erent cases.Case 1. Exactly three vertices are interior to one region, say to (a; e; c; b).Let f , g, h be these three vertices. Then the vertices b, f , g, h must forma complete 4-graph. It is easy to see that one of the vertices f , g, h, say f ,must be interior to the region determined by the other three vertices b, g, h.This leaves f with an incidence of three.Case 2. Four vertices are interior to one region and �ve to the other. Butthe total number of free degrees of the vertices a, b, c, d, e is only thirteen.Similarly, we can show that the only 2-paths from b to d pass througheither a or c.PSfrag replacements
abcd e

f
g h i

jk
l

Figure 1.Next, consider the four "empty" triangles bounding the edges of the quad-rangle (a; b; c; d) with respective third vertices e, f , g, h. Obviously, the ver-tices e, f , g, h must all be distinct. The free degree of the vertices a, b, c, dis one, so let i, j, k, l be the other endpoints of the �fth edges incident to a,b, c and d, respectively. The above observations show that the vertices a, b,c, d, e, f , g, h and the vertices i, j, k, l are pairwise distinct, moreover i 6= kand j 6= l. We prove that the vertices i, j, k, l are pairwise distinct, too. Fora contradiction assume that two vertices, say i and j coincide. Since the freedegrees of a and b are zero, the vertex i must be adjacent too. This leavese with an incidence of three, a contradiction. Now, the free degrees of thevertices a, b, c, d are zero, thus the edge-pairs ((i; a); (a; e)), ((e; b); (b; j)),: : : , ((h; a); (a; i)) determine eight "empty" triangles (see Figure 1).Finally, the unbounded region (i; e; j; f; k; g; l; h) must contain the remain-ing two vertices in its interior. Since the total number of free degrees of thevertices i, e, j, f , k, g, l, h is twelve, two of these vertices must be adjacent.Then we have �ve combinatorically di�erent cases:(1) i and j are adjacent,



Regular circle packings 5(2) i and f are adjacent,(3) i and k are adjacent,(4) e and f are adjacent,(5) e and g are adjacent.The veri�cation of the impossibility of these cases is simple and is left tothe reader.3. Regular circle packing constructionsk = 2This case is settled by a "ring" of n successively touching congruent circleswhose centres form the vertices of a regular n-gon.k = 3It is easy to see that four circles can be arranged in the plane such that anytwo of them touch each other. On the other hand, for n > 6 and n is even,we consider two rings of circles in centrally similar position each containingn2 circles such that the corresponding circles are neighbours.k = 4First, we deal with the case when n has the form 2m, where m > 3. Ob-viously, a slight modi�cation of the preceding construction results in a 4-neighbour packing consisting of n circles.Next, we consider the case when n = 4m � 1, m > 3. For n = 11 andn = 15 see Figure 2 and Figure 3, respectively.
Figure 2.
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PSfrag replacements a bcd e fgh
Figure 3.In Figure 3 the circles a, b, c, d and the circles e, f , g, h are congruentand their centres form the vertices of two squares. For n = 19 consider thefollowing construction. Decrease slightly the radii of the circles e, f , g, hand translate these circles so that the new circles e0, f 0, g0, h0 touch a and b,b and c, c and d, d and a, respectively. Note that the centres of e0, f 0, g0, h0also form the vertices of a square. Finally, add four new congruent circles i,j, k, l so that(1) i touches e0, f 0, l, j,(2) j touches f 0, g0, i, k,(3) k touches g0, h0, j, l,(4) l touches h0, e0, k, i.It is easy to see that all remaining numbers can be reached repeating theabove procedure.The case n = 4m � 3, where m > 3, can be settled similarly using theinitial con�gurations n = 9, n = 13, and n = 17 (see Figures 4-6).



Regular circle packings 7

Figure 4.

Figure 5.

Figure 6.



8 L�aszl�o Szab�ok = 5Let us consider, as a �rst step, the case n = 4m, where m > 3. In Figure 7choose the angle at O to be equal to 8�n . We note that the existence of thisarrangement follows by a simple continuity argument. Furthermore, if werotate this �gure around the point O by the multiples of 8�n , we obtain a5-neighbour packing consisting of n circles.
PSfrag replacementsO Figure 7.To �nish the proof we introduce the following pasting construction on 5-neighbour circle packings. Take a 5-neighbour packing consisting of n circlesand choose a circle c of this collection. Let the new circle system be the unionof the original circle packing and its image under the inversion correspondingto c deleting the circle c. This construction results in a 5-neighbour packingconsisting of 2n� 2 circles.Now take a look at the case n = 8m � 2, where m > 3. Clearly, wecan immediately reach these circle packings from the packings consisting ofn = 4m circles by the pasting construction.Next, consider the case n = 8m + 2, where m > 2. In this case we needthe initial con�gurations n = 18 and n = 26 (see Figure 8 and Figure 9).Then, one can show by induction that all these circle packings can be reachedusing the pasting construction, too.
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Figure 8.

Figure 9.
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