Barbara Baumeister |
David Bundy |
Andy Chermak |
Niels Hebbinghaus |
Ulrich Meierfrankenfeld |
Mario Mainardis |
Chris Parker |
Gemma Parmeggiani |
Peter Rowley |
Bernd Stellmacher |
Gernot Stroth |
|
Let G be a finite group and p a prime. G is of characteristic p if CG(Op(G)) < Op(G). G is of local characteristic p if all p-local subgroups of G are of characteristic p. Below are links to various talks, preprints and drafts on the classification of the finite groups of local characteristic p.
Title | Authors | Status |
The Structure Theorem | Bernd/Gernot/Ulrich | submitted |
The FF-module Theorems and Applications | Bernd/Ulrich | submitted |
A characterization of G_2(3) | Gernot/Ulrich | J. Group Theory |
Isolated Subgroups in Finite Groups | Chris/Peter/Ulrich | J. London Math. Soc. |
F-Stability | Bernd/Ulrich | Trans. Amer. Math. Soc. |
Nearly Quadratic Modules | Bernd/Ulrich | J. Algebra |
The Fitting Submodule | Bernd/Ulrich | Arch.Math. |
The Other P(G,V)-Theorem | Bernd/Ulrich | Rend. Padova |
The P! Theorem | Bernd/Chris/Gemma | Journal of Algebra |
The local CGT Theorem | Bernd/Dave/Niels | J. Algebra |
The P~! Theorem | Bernd/Gemma/Mario/Ulrich | J. Algebra |
An Overview | Bernd,Gernot/Ulrich | Proceed. Durham Conf. |
Talks | Ulrich | |
Generic Groups of p-type | Bernd/Ulrich | Random Results/Draft |
The Pushing Up Theorem
|
Andy/Gemma/Ulrich |
Beginning of a Draft |
The Rank 2 Case | Andy | Draft |
The Big Book of Small Modules | Andy/Barbara/Ulrich | Beginning of a Draft |
The Non E-uniqueness Case | Bernd/Gernot/Ulrich | Beginning of a Draft |
The Small World Theorem | Bernd//Ulrich | Beginning of a Draft |
The b=2 Case | Chris/Peter//Ulrich | Beginning of a Draft |