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Abstract. In this note, we prove the periodic homogenization for a family of nonlinear
nonlocal “elliptic” equations with oscillatory coefficients. Such equations include, but
are not limited to Bellman equations for the control of pure jump processes and the
Isaacs equations for differential games of pure jump processes. The existence of an
effective equation and convergence the solutions of the family of the original equations
is obtained. An inf-sup formula for the effective equation is also provided.

1. Introduction

In this note, we consider the homogenization of the family of nonlinear, nonlocal

(integro-differential) equations given by{
F (uε,

x

ε
) = 0 in D

uε = g on Rn \D,
(1.1)

where D is an open, bounded domain in Rn. In this context the operator, F , will take

the form:

F (u,
x

ε
) =

inf
α

sup
β

{
fαβ(

x

ε
) +

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))Kαβ(
x

ε
, y)dy

}
.

Such operators appear in Bellman-Isaacs equations related to optimal control and to two

player games involving pure jump Lévy processes. We assume that the family of opera-

tors, F (u, x), are Zn periodic with respect to their dependence on Rn. These periodicity

assumptions, the exact assumptions on F , and the precise meaning of equations such as

(1.1) will be elaborated below.
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Recently much attention has been paid to modeling with jump diffusion processes,

particularly in financial mathematics and engineering ([1], [8], [13], [14], [23], [24] and

many more). Here we investigate the macroscopic contribution of order 1 oscillations

of the equation at a microscopic spacial scale, modeled by the equations dependence on

x/ε. The expectation is that due to the periodic nature of oscillations, the microscopic

behavior can be “averaged” out to produce a simpler model approximating the behavior

at the macroscopic level (homogenization occurs). Our current study is restricted to

equations involving the generators for pure jump processes, which represents a vital first

step towards understanding the more general behavior of generators of jump-diffusions.

1.1. Main Theorem and Assumptions. The results we prove will show the existence

of an effective nonlocal equation such that the family of solutions governed by (1.1)

converges locally uniformly to the solution of this effective equation. The important

features are that the effective equation is nonlocal, elliptic, and translation invariant,

given by {
F̄ (ū, x) = 0 in D

ū = g on Dc.
(1.2)

This behavior of uε is described in the main theorem of the note:

Theorem 1.1. Assume F1, F2a, F2b,F3, F4 listed below and that the comparison theo-

rem holds for (1.1). Then there exists a translation invariant operator, F̄ , which describes

a nonlocal “elliptic” equation such that for any choice of uniformly continuous data, g,

the solutions of (1.1) converge locally uniformly to a unique ū, and ū solves (1.2). More-

over F̄ is “elliptic” with respect to the same extremal operators as the original operator,

F .

Remark 1.2. We say that the nonlocal elliptic operator, F̄ , is translation invariant if

F̄ (u, x + y) = F̄ (u(· + y), x) whenever u is such that F̄ (u, x + y) is well defined. The

notions of “ellipticity” and extremal operators for operators such as F are discussed in

the Appendix (Section, 7).

The context, definitions, and properties of equations such as (1.1) and (1.2) are taken

from [4], [5], [9], and [10]. We point out the very important difference in sign convention

regarding sub and super solutions of (1.1). In this note, we adopt the convention from

[10], namely that a subsolution will solve F (u, x) ≥ 0.

As to be expected, the nonlocal nature of (1.1) introduces some additional difficulties

that are not present in its second order elliptic counterpart. One such difficulty is that the
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effective equation is defined on a space of appropriate smooth functions on Rn, instead of

the space of symmetric matrices (which can be associated to the paraboloids they give rise

to as functions). The second major difficulty is that the natural scaling of the problem

is given by the transformation u(x) maps to εσu(x/ε), for σ < 2 (this is elaborated

below). However, the class of functions for the definition of the effection equation is not

invariant under this scaling! In the second order case, the relevant scaling is u(x) maps to

ε2u(x/ε), and the paraboloids are indeed invariant with respect to this transformation.

In previous works, this translation invariance was fundamentally used to identify the

effective equation, [12]. We circumvent this difficulty by appropriately modifying the

definition of the “corrector” equation and modifying the known proofs of the existence

of the effective operator to lessen the strategic use of paraboloids in previous works (this

is described in Section 2).

We make some additional assumptions about the operator, F . First, we require for

the convenience of concrete notation that

• (F1) (Inf-Sup Form of The Operator, F )

F (φ, x) =

inf
α

sup
β

{
fαβ(x) +

∫
Rn

(φ(x+ y) + φ(x− y)− 2φ(x))Kαβ(x, y)dy
}
.

(1.3)

This assumption does not appear to be absolutely necessary for the results proved in this

note, but it does give a very general, concrete form of equations with which to work.

When we write (1.1) for a smooth and appropriately integrable φ, we actually mean the

expression given by

F (φ,
x

ε
) =

inf
α

sup
β

{
fαβ(

x

ε
) +

∫
Rn

(φ(x+ y) + φ(x− y)− 2φ(x))Kαβ(
x

ε
, y)dy

}
.

(1.4)

This notation is meant to be in agreement with the same conventions for local dif-

ferential equations. For example it is now standard that if we define the operator

L(D2u, x) = aij(x)uxixj(x), then by writing the expression L(D2u, x/ε), we actually

mean aij(x/ε)uxixj(x).

For purposes of regularity of the solutions of (1.1), we will require that each integration

kernel, Kαβ, is symmetric in the variable of integration, that all the kernels in the family

satisfy the same scaling with respect to y and that they are “uniformly elliptic”:
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• (F2a) (Symmetry of The Kernels)

Kαβ(x,−y) = Kαβ(x, y), (1.5)

• (F2b) (Scaling Propertry of The Kernels) For some 0 < σ < 2,

Kαβ(x, λy) = λ−n−σKαβ(x, y), (1.6)

• (F3) (Uniform Ellipticity) There exist positive constants, λ < Λ such that

λ

|y|n+σ ≤ Kαβ(x, y) ≤ Λ

|y|n+σ . (1.7)

We say σ in (1.6) and (1.7) is the order of the operators corresponding to these kernels.

Typically, the operators in (1.3) naturally arise as the generators corresponding to a

pure jump process on Rn and are commonly written as∫
Rn

(φ(x+ y)− φ(x)− [Dφ(x) · y]1|y|≤1)Kαβ(x, y)dy.

However, as utilized in [10] the symmetry property allows us to write (1.3) using the

symmetric difference of φ instead of the gradient of φ. The scaling assumption, (1.6),

tells us that if v satisfies F (v, x) = 0 in a set, ε−1D, then u(x) = εσv(x/ε) satisfies

F (u, x/ε) = 0 in the set, D. This will be an indispensable property for identifying the

effective equation.

Finally we have

• (F4) (Periodicity of F)

F (u, x+ z) = F (u(·+ z), x) for all z ∈ Zn,

which is satisfied whenever fαβ and Kαβ(·, y), for y fixed, are Zn-periodic.

1.2. Comments on Uniqueness For (1.1). In this work, the analysis of the Homog-

enization for (1.1) is in fact completely unrelated to the assumptions of existence and

uniqueness for (1.1) – the only thing that matters is whether or not the comparison

theorem holds. It is for this reason that we do not give the most precise assumptions

for existence and uniqueness (e.g. a comparison theorem) for such equations. The most

current results for existence and uniqueness can be found in [5]. The difficulty lies in the

fact that the uniqueness theory is only well developed for operators which take the form∫
Rn

(φ(x+ jαβ(x, y)) + φ(x− jαβ(x, y))− 2φ(x)) |y|−n−σ dy,

but not as much for the form used in this work,∫
Rn

(φ(x+ y) + φ(x− y)− 2φ(x))Kαβ(x, y)dy.
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Both forms appear to be used significantly in the literature, as evidenced in [5] and [22]

for the former and [10] and [6] for the latter, and the many references contained within

each.

One particular assumption which gives uniqueness of (1.1) and also respects F2a, F2b,

and F3 is

• (F5) (Uniqueness) fαβ are uniformly bounded and uniformly continuous, and the

nonlocal operators in (1.3) are given as∫
Rn

(φ(x+ jαβ(x, y)) + φ(x− jαβ(x, y))− 2φ(x)) |y|−n−σ dy,

with

jαβ(x, y) = cαβ
(
x,

y

|y|
)
y, (1.8)

and cαβ are Lipschitz in x, uniformly in y, α, and β.

It can be checked by a change of variables, w = j(x, y), that these particular forms of j

will result in an operator of the form∫
Rn

(φ(x+ y) + φ(x− y)− 2φ(x))Kαβ(x, y)dy.

More details regarding (F5) and uniqueness appear in the appendix.

2. Background and Main Ideas

The main feature of equations such as (1.1) which will allow us to identify the effective

equation, F̄ , is the behavior of solutions to a certain family of obstacle problems. This

method was introduced in [12], and our strategy very closely follows the one presented

there. In this note, the methods of [12] have been adapted to suit the nonlocal nature of

(1.1).

2.1. Motivation of The Corrector Equation. To motivate the present investigation,

we recall some key ideas used for homogenization in previous works: ([7], Chapter 1 -

Section 2), ([12], Section 1), and ([18], Sections 2 and 3), but presented in the context of

nonlocal equations. We proceed with the linear case for the sake of clear presentation:

F (φ,
x

ε
) = f(

x

ε
) + [Lεφ](x) = f(

x

ε
) +

∫
Rn

(φ(x+ y) + φ(x− y)− 2φ(x))K(
x

ε
, y)dy.

The two main observations are:

1. uε solving (1.1) should (formally!) obey an expansion as

uε(x) = ū(x) + εσv(
x

ε
) + o(εσ)
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2. Lε actually has two separate scales, one is the location of the centered difference

given by x and the other is the location of the kernel evaluation given by x/ε. As

stated in the Appendix– Lemma 7.5, if we define

[Lφ(z)](x) =

∫
Rn

(φ(z + y) + φ(z − y)− 2φ(z))K(x, y)dy, (2.1)

then for x fixed, [Lφ(z)](x) is actually a uniformly continuous function of z (the

location of the centered difference), depending only on ‖D2φ‖∞ and the ellipticity

constants for L. In particular the uniform continuity is completely independent

of x!

To simplify matters even further, for the sake of presentation, let us temporarily assume

the most basic form of the equation– L is given by the fractional Laplacian:

[Lφ(z)](x) =

∫
Rn

(φ(z + y) + φ(z − y)− 2φ(z)) |y|−n−σ dy.

Our original equation, (1.1), now reads

Luε(x) = f(
x

ε
),

for some f .

We would now like to make sense of (1.1) while plugging in the expansion of uε for all

ε. Doing so would require

Lū(x) + Lv(
x

ε
) = f(

x

ε
). (2.2)

Here we have used F2a for L(εσv(·/ε))(x) = Lv(x/ε). Furthermore, as ε → 0, x/ε

becomes a global variable and x can be considered fixed, hence we are more or less

looking for periodic solutions of

Lū(x) + Lv(y) = f(y) for y ∈ Rn.

Thanks to the self adjointness of L as the fractional Laplacian, and the fact that the only

bounded global solutions of L = 0 are constants, the Fredholm Alternative tells us that

the previous line will only have a solution when∫
Q

f(y)dy− Lū(x) = 0,

which will only happen in very special occurrences of Lū(x).

The only reasonable way to legitimize the expansion and salvage the information from

(1.1) for all ε would be to force this integral to be zero, depending only on ū and x. In
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this case we take the constant, F̄ (ū, x), such that

F̄ (ū, x) +

∫
Q

f(y)dy− Lū(x) = 0.

Then there is some v that solves

Lū(x) + Lv(y)− f(y) = F̄ (ū, x), (2.3)

and plugging this particular choice of v back to the expansion and also in (2.2), we exactly

see an effective equation as

F̄ (ū, x) = 0.

Moreover, in order for the approximation to make sense, and recover uε → ū uniformly,

we require the decay condition that εσv(·/ε) goes to zero uniformly.

Going back to the general linear case, we use the motivation of (2.3), with or without

the Fredholm justification, to find a constant, F̄ , such that there is a periodic solution,

v, of

[Lū(x)](y) + [Lv(y)](y) + f(y) = F̄ (ū, x) for y ∈ Rn. (2.4)

Solving this problem is referred to (in this work) as solving the “true corrector” equation,

and is often called the cell problem in other works. It simply means we have identified

the equation which must be satisfied in order that the function v would be a σ-order

correction to the function ū nearby x in order that the expansion of uε remains valid.

Although we do indeed prove this “true corrector” equation will have a solution (made

precise in Section 5), it is unlikely that it will have a solution in a non-periodic setting

(c.f. [12], [20] for discusion in the context of Second Order equations and Hamilton-Jacobi

equations, respectively).

Our first generalization will be removing the restriction that there should be only one

function, v, such that its rescaling, εσv(·/ε), corrects the behavior of uε for all ε. It

is natural to allow the correction term to depend on ε as well. So we search for some

appropriate family of functions, vε, such that

uε = ū+ vε + o(ε).

Second, we recall that for viscosity solutions, we will need to know the value of F̄ (φ, x0)

for all possible test functions φ and locations of evaluation, x0. Supposing that we would

like to show ū is a subsolution of some effective equation, F̄ ≥ 0, we inherit a constraint

on the possible values of F̄ . F̄ must take values such that whenever ū − φ has a global

maximum at x0, then F̄ (φ, x0) ≥ 0. We now face two questions: what should be the
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value of F̄ (φ, x0), and which equation must such a vε satisfy in order to maintain the

correct sign for the subsolution inequality, F̄ ≥ 0?

For the moment, we may assume ū is a smooth subsolution, F̄ (ū, x) ≥ 0 (this is not

true, but the actual viscosity solution argument for the proof of (1.1) does not see the

difference). We go back to the corrector equation at the ε level,

[Lū(x)](
x

ε
) + [Lv(

x

ε
)](
x

ε
) + f(

x

ε
) = F̄ (ū, x), (2.5)

with the goal of restricting our attention to only a small neighborhood of x0. Moreover,

if ū is smooth, then by the observed uniform continuity of [Lū(x)](x/ε), we can restrict

our attention to fixing x at x0 (only for the term [Lū(x)](x/ε), not for all of (2.5)) and

only incur a small error in the equation. By the global ordering of φ ≥ ū, the fact that

ū(x0) = φ(x0), and the ellipticity of L, we can conclude that

[Lφ(x0)](
x

ε
) + [Lvε(x)](

x

ε
) + f(

x

ε
) ≥

≥ [Lū(x0)](
x

ε
) + [Lv(

x

ε
)](
x

ε
) + f(

x

ε
) ≥ F̄ (ū, x)− δ,

for some small δ arising from the switch to x0 fixed from any nearby x. Now we use the

same logic for setting the equation to be a constant independent of ε, and this time the

decay condition giving the local convergence of uε → ū is simply the uniform convergence

of vε → 0. Hence if we could set the top equation equal to a constant, F̄ (φ, x0), we would

recover

F̄ (φ, x0) = [Lφ(x0)](
x

ε
) + [Lvε(x)](

x

ε
) + f(

x

ε
) ≥ F̄ (ū, x)− δ ≥ −δ,

by the subsolution equation for ū. We see F̄ (φ, x0) ≥ −δ for arbitrary δ and thus would

obtain the correct subsolution inequality. Under the mild restriction that we hope the

same vε should work for both the subsolution and supersolution inequalities, we are

reasonably led to find the solution of the “corrector” equation:

For each φ and x0, find a unique constant, F̄ (φ, x0) such that there is a family of

solutions, {vε}, solving

[Lφ(x0)](
x

ε
) + [Lvε(x)](

x

ε
) + f(

x

ε
) = F̄ (φ, x0) for x ∈ B1(x0), (2.6)

subject to the compatibility condition ‖vε‖∞ → 0. (The appearance of B1(x0) is merely

for concreteness, for the equation is only actually used for x in a very small ball near x0,

based on the smoothness of ū and φ.)
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In the general case, including the fully nonlinear F in (1.3), we are led to the solution

of the corrector equation:

for each φ and x0 fixed, we must identify a unique F̄ such that the unique solutions of{
Fφ,x0(vε,

y

ε
) = F̄ (φ, x0) in B1(x0)

wε(y) = 0 on B1(x0)c.
(2.7)

also obeys the correct decay property in ε, namely

lim
ε→0

max
B1(x0)

|vε| = 0, (2.8)

where we have used the notation similar (2.6) as

Fφ,x0(v,
y

ε
) = inf

α
sup
β

{
fαβ(

y

ε
) + [Lαβφ(x0)](

y

ε
) + [Lαβv(

y

ε
)][
y

ε
]
}
. (2.9)

The appearance of the Dirichlet problem is simply to have a unique family, wε, with

which to work, and the choice of B1(x0) is simply to indicate that we will work locally

near x0 instead of globally.

Making the above heuristic arguments rigorous for the case of viscosity solutions is

the work of the Perturbed Test Function Method used by Evans in [17], [18], and will be

found in this note in Section 4.

For completeness, we will in Section 5 prove that true correctors for this equation do

exist. That is we prove the existence of a unique constant, F̄ (φ, x0), such that there

exists a global periodic solution of the true corrector equation:

Fφ,x0(w, y) = F̄ (φ, x0) in Rn.

In light of the rescaling dictated by (1.6), such a periodic solution can be rescaled to solve

(2.7) and (2.8), excluding the boundary conditions. In Section 5 the true correctors will

give a convenient inf-sup formulation for the value of the effective operator F̄ (φ, x0). It

is useful to point out that both methods have their advantages and disadvantages. Such

a comparison will be made in Section 6.

The key ideas we employ for investigating (2.7) and (2.8) originate in [12]. In order

to find such a particular choice of F̄ in (2.7) that will also give the correct decay, (2.8),

we relax the goal slightly to the new one of simply finding a relationship between the

choice of a generic right hand side of (2.7) and the limit of the functions vε. We therefore

consider, for l fixed, the unique solutions (for each ε > 0) of{
Fφ,x0(wεl ,

y

ε
) = l in B1(x0)

wεl (y) = 0 on B1(x0)c.
(2.10)
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The goal is to show that by manipulating the choice of l, we can obtain the desired

behavior on the functions (wεl )ε>0. We remark that for l negative enough, the function

P+(x) = (1− |x|2)2 · 1B1(x)

is a subsolution of the equation (we have taken x0 = 0 for the sake of presentation). By

comparison with P+, it follows that lim inf(wεl ) > 0 when l is negative enough. On the

other hand, for l large enough the function

P−(x) = −(1− |x|2)2 · 1B1(x)

is a supersolution of this equation (again, we have taken x0 = 0). Hence lim sup(wεl ) < 0,

by comparison with P− whenever l is positive enough. We will be able to satisfy (2.8)

if we can exhibit some l such that simultaneously lim sup(wεl ) ≤ 0 and lim inf(wεl ) ≥ 0

(there are also uniform Hölder estimates for wε, and hence the uniform convergence).

Thus the hope is that for some careful choice of an intermediate value of l, we can

exactly balance both behaviors. This desire to characterize the link between the choice

of l and the limiting behavior of wεl leads to using the obstacle problem for the analysis

of the solutions wεl . The conclusion of the analysis regarding (2.7) and (2.8) appears as

Proposition 3.9 in Section 3.

It may be helpful to point out that although this is indeed the same as the approach

of [12] in spirit, the execution is in fact a bit different. In [12], the sets in the space of

polynomials where F̄ (P ) ≤ 0 and F̄ (P ) ≥ 0 are identified, and hence the equation is

know in the sense of viscosity solutions. In our situation a slightly different approach is

taken; we will instead directly assign a value to the operator F̄ (φ, x0) for all appropriate

test functions, φ, and x0 ∈ D.

2.2. Notation. We conclude this section with a few remarks about notation. We use

the notation from [10] for C1,1(x0) to be the collection of all functions, φ, that satisfy for

some v ∈ Rn and m > 0 fixed (and depending on φ),

|φ(x)− φ(x0)− v · (x− x0)| ≤ m |x− x0|2

for all x in a neighborhood of x0. We also use the standard notation for the half-relaxed

upper and lower limits of a sequence of functions, say {uε}ε>0, respectively as

(uε)∗(x) = lim
ε→0

sup
{δ≤ε, |x−y|≤ε}

uδ(y); (uε)∗(x) = lim
ε→0

inf
{δ≤ε, |x−y|≤ε}

uδ(y).

It is important to note that if (uε)∗ = (uε)∗ = u, then this implies uε → u locally

uniformly.
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We will frequently be using cubes and balls in Rn. By the notation Br(x) we mean the

ball of radius r, centered at x. By the notation Qr(x) we mean the cube with a length

of side of 2r, centered at x.

At many points we will have the need to use special functions that take the place of

1 − |x|2 and |x|2 − 1. We simply need to truncate them to account for their lack of

integrability at infinity. We will use:

p+,z0(x) = max(1− |x− z0|2 , 0) (2.11)

and

p−,z0(x) = min(−1 + |x− z0|2 , 0). (2.12)

When z0 = 0, we simply write p+ and p−. Occasionally we may encounter the need for

a function that is smooth throughout the domain, and the sign of M+ or M− remains

the same on the whole domain. In such a situation it will be useful to have the functions

above but with supports different from B1, we hence define

p+
R(x) = p+(

x

R
) and p−R(x) = p−(

x

R
).

Lastly, we would like to point out that all inequalities regarding sub and super solutions

of any of the equations mentioned will follow the convention of [11] and [10]; that is u is

a subsolution of an equation if

F (u, x) ≥ 0.

3. The Solution of The “Corrector” Problem

The goal of this section is to show that there does indeed exist a unique choice of

F̄ (φ, x0) such that the solution of (2.7) also satisfies (2.8). As mentioned in Section 2 we

investigate, for l fixed, the solutions of{
Fφ,x0(wεl ,

y

ε
) = l in Q1(x0)

wεl (y) = 0 on Q1(x0)c.
(3.1)

Again, the idea is to find a relationship between the choice of l and the possible limits

for (wεl )∗ and (wεl )
∗. The main observation will be that the solution to obstacle problem

for the equation F (u, x/ε) ≤ l carries enough information in its contact set with the

obstacle 0 to be able to extract information about the possible limits for wεl . Here we

switched to cube, Q1,for ease of writing the proofs. This is not necessary for the final

results, but it is much easier to use cubes for (2.7) to exploit the fact that they match

up with Zn nicely. Again, we recall from Section 2 that the goal will be to find some

appropriate choice of l that will lie just at the borderline of those l that give
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(wεl )∗ ≥ 0 and those that will give (wε)∗ ≤ 0, and hence the correct choice should

exhibit both inequalities simultaneously.

We now introduce the obstacle problem which will be used to identify the correct choice

of l in (2.7) ( the correct l will be used as the definition of F̄ ). For any set, A, consider

the function U l
A defined as the least supersolution of the operator Fφ,x0 that is above zero

in A:

U l
A = inf

{
u : Fφ,x0(u, y) ≤ l in A and u ≥ 0 in Rn

}
.

It will also be useful to have the rescaled function for the equation set in a scaled domain,

εA, with oscillatory coefficients:

uε,lA = inf
{
u : Fφ,x0(u,

y

ε
) ≤ l in εA and u ≥ 0 in Rn

}
.

We remark that in light of (1.6), the relationship between U l
A and uε,lA is given by

uε,lA (x) = εσU l
A(
x

ε
). (3.2)

The main properties of U l
A we will use are found in the Appendix as Lemmas 7.6, 7.7,

7.8, and 7.9.

It will in fact be possible to look at the limiting behavior of the functions, wεl , solving

(3.1) by using a dichotomy of the possible behaviors of the obstacle solutions, U l
Q1/ε

, in

the cubes Q1/ε. That is,

U l
Q1/ε

= inf
{
u : Fφ,x0(u, y) ≤ l in Q1/ε and u ≥ 0 in Rn

}
, (3.3)

uε,lQ1
= inf

{
u : Fφ,x0(u,

y

ε
) ≤ l in Q1 and u ≥ 0 in Rn

}
. (3.4)

The two possibilities we consider are the following dichotomy for the functions U l
Q1/ε

defined in (3.3).

dichotomy:

(i) For all ε > 0, U l
Q1/ε

= 0 for at least one point in every complete cell of Zn

contained in Q1/ε.

(ii) There exists some ε0 and some cell, C0, of Zn such that U l
Q1/ε0

(y) > 0 for all

y ∈ C0.

The benefit of the observed dichotomy is that it does indeed identify the possibly limits

for wεl as described in Lemmas 3.1 and 3.4

Lemma 3.1. If (ii) of the dichotomy occurs, then (wεl )∗ ≥ 0.
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Lemma 3.1 will be a direct consequence of the following lemma describing the behavior

of the functions uε,lQ1
− wεl .

Lemma 3.2. If (ii) of the dichotomy occurs, then (uε,lQ1
− wεl )∗ ≤ 0.

We first assume Lemma 3.2, and prove Lemma 3.1. Lemma 3.2 will then be proved

below.

Proof of Lemma 3.1. We use the properties of the obstacle and free solutions from Lemma

3.2, combined with the fact that uε,lQ1
≥ 0 by definition. We have

−wεl = (0− wεl ) ≤ (uε,lQ1
− wεl )

Thanks to Lemma 3.2, after taking the upper limits

(−wε)∗ = −(wεl )∗ ≤ 0.

�

Proof of Lemma 3.2. The main idea of this proof is based on the monotonicity property

of the obstacle problem, Lemma 7.9. That is, if A ⊂ B, then U l
A ≤ U l

B. Thus, as soon

as (ii) occurs, we know that U l
Qr
> 0 on C0 for all r > 1/ε0. Furthermore by periodicity

and Lemma 7.8, U l
Qr
> 0 on all translates of C0, C0 + z, whenever r is large enough so

that Q1/ε0 + z ⊂ Qr.

Thus we can build a set of the translates of C0, which we will call CN :

CN =
⋃

|z|≤N
√
n

z∈Zn

(C0 + z)

(recall n is the dimension). By construction, we have U l
Q1/ε

> 0 on CN whenever 1/ε >

N + 1. Moreover, we notice that for rN = 1/ε0 + N + 1, we have control over the ratio

of the volumes:

|CN |
|QrN |

=
(1 + 2N)n

rnN
=

(1 + 2N)n

(1/ε0 + 2N + 1)n
→ 1, as N →∞.

Now we rescale back to the obstacle problem on Q1. We know that inside Q1, the

rescaled version of CN will be one cube that eventually fills up the entire volume of

Q1. Precisely, given any δ > 0, there is ε(δ) such that for each ε < ε(δ) there exists a

connected cube, Cε, contained in Q1 such that uε,lQ1
> 0 on Cε and

|Cε|
|Q1|

≥ 1− δ,

whenever ε < ε(δ). Therefore if Kε is the contact set for uε,lQ1
, then Kε ⊂ Q1 \ Cε.
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We will exploit the fact that since uε,lQ1
> 0 in Cε, it follows that actually uε,lQ1

is a true

solution to F (uε,lQ1
, x/ε) = l in Cε. Thus we may compare the two functions uε,lQ1

and wεl :

sup
Cε

(uε,lQ1
− wεl ) ≤ sup

Rn\Cε
(uε,lQ1

− wεl ).

In light of the fact that both functions are uniformly Hölder continuous in the closure

of Q1 by Theorem 7.3 and Lemma 7.6, and both have the same boundary data of 0 on

Rn \Q1, we can conclude that the supremum reduces to a narrow strip at the inside edge

of Q1

sup
Rn\Cε

(uε,lQ1
− wεl ) ≤ C

(
max
x∈∂Cε

(d(x, ∂Q1))

)γ
.

Therefore, in the worst case scenario, owing to the Hölder continuity at the boundary of

Q1 we would have

sup
Rn\Cε

(uε,lQ1
− wεl ) ≤ C̃(δ1/n)γ.

Finally this gives

sup
Q1

(uε,lQ1
− wεl ) ≤ sup

Cε

(uε,lQ1
− wεl ) + sup

Q1\Cε
(uε,lQ1

− wεl )

≤ C̃(δ1/n)γ.

After taking the upper limit, we conclude the result because δ > 0 was arbitrary. �

Remark 3.3. We note that Lemma 3.2 simply says that under the condition of (ii), the

solution of the obstacle problem and the solution of the free problem become exactly the

same in the limit. In the second order case, this will happen under much more general

circumstances. In fact, the difference, uε,l(Q1)−wεl , (in both the local and nonlocal cases) is

a subsolution of an equation with the maximal operator, M+, and right hand side given

as a the characteristic function of the contact set between uε,l(Q1) and the obstacle, y = 0.

A result which is sensitive enough to estimate the supremum of subsolutions to such

equations in terms of a measure theoretic quantity of the right hand side (the Ln norm

in the second order case) is precisely what can be used to achieve the outcome of Lemma

3.2 in a more general scenario. In the second order case, this is exactly the Aleksandroff-

Bakelman-Pucci estimate– the interested reader should consult [11], Chapter 3, and [12],

Theorem 2.1 with its proof and discussion. However to date, such an estimate for nonlocal

operators is unknown– at least to the author.

Lemma 3.4. If (i) of the dichotomy occurs, then (wεl )
∗ ≤ 0.
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Proof of Lemma 3.4. This lemma is a straightforward application of (i) and rescaling

back to uε,lQ1
. The rescaling, combined with the uniform continuity of uε,lQ1

from Lemma

7.6 gives the result. Indeed, we always have wεl ≤ uε,lQ1
simply by the fact that wεl is a

subsolution of the equation. Furthermore by (i), we know that uε,lQ1
= 0 for at least one x

in every single cell of εZn that is contained in Q1. Therefore due to the Hölder continuity

from Lemma 7.6, we have that

wεl ≤ uε,lQ1
≤ Cεγ,

where C and γ are independent of ε. Now taking the local uniform upper limit, we

conclude that (wεl )
∗ ≤ 0. �

Lemmas 3.1 and 3.4 indicate that we can now make the correct choice of l so as to

correctly balance both potential limiting behaviors of wεl . The comments in Section 2

showed that for l very negative, (wεl )∗ ≥ 0, and therefore, we want to choose the largest

such value of l that still gives this behavior. We can now characterize F̄ (φ, x0) as

F̄ (φ, x0) = sup{l : (ii) occurs for the family U l
Q1/ε
}. (3.5)

We first show that this choice exhibits the correct decay for the solution (Lemma 3.5)

and then in a separate lemma that it is a unique choice (Lemma 3.7). In both results

that follow, we assume without loss of generality that x0 = 0. If x0 6= 0, then the proofs

can be modified simply by replacing Q1 by Q1(x0) and p± by p±,x0 (see (2.11),(2.12)).

Lemma 3.5. If l = F̄ (φ, x0) then wεl solving (3.1) also satisfies (2.8).

Remark 3.6. It is useful here to note that the function p−
3
√
n

is smooth in Q1 and satisfies

M−(p−
3
√
n
)(x) ≥ c > 0 in Q1 for some c. This constant c can be chosen to depend only

on Q1, λ, Λ, and the dimension. Moreover, for α > 0, αp−
3
√
n

satisfies M−(αp−
3
√
n
)(x) ≥

αc > 0. Furthermore, an analogous statement holds for p+
3
√
n

and M+. These properties

will be useful in proving multiple statements to follow.

Proof of Lemma 3.5. The stated limit will be proved in two pieces. First it will be shown

that (wεl )
∗ ≤ 0 and then it will be shown that (wεl )∗ ≥ 0.

We will first show that (wεl )
∗ ≤ 0. To do so, we let lk > l and lk → l as k →∞. The

goal will be to choose αk → 0 such that αkp
+
3
√
n

+wεlk is a supersolution of (3.1) with the

right hand side l. The upper limit of wεl can then be controlled by that of wεlk , which

is dictated by Lemma 3.4 because (i) of the dichotomy must hold due to the fact that

lk > l. For ease of notation, we let

wk = αkp
+
3
√
n

+ wεlk .
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In order to select the correct choice of αk, we write out the equation for wk and use

Remark 3.6:

Fφ,x0(wk,
y

ε
) ≤ Fφ,x0(wεlk ,

y

ε
) +M+(wk − wεlk)

≤ lk − αkc.

We thus choose αk such that lk − αkc ≤ l; we note that this allows αk → 0 as lk → l.

With this choice, wk is indeed a supersolution of (3.1) for l. Hence by comparison,

sup
Q1

(wεl − wk) ≤ sup
Rn\Q1

(wεl − wk) ≤ 0.

In other words,

αkp
+
3
√
n

+ wεlk ≥ wεl .

Taking upper limits, applying Lemma 3.4, and using p+
3
√
n
≤ 1 we conclude that

αk ≥ (wεl )
∗.

Here we have used the fact that lk > l and hence (i) of the dichotomy must hold for lk.

Finally, taking αk → 0, we conclude that (wεl )
∗ ≤ 0.

To prove that (wεl )∗ ≥ 0, there are two possibilities. Either (ii) of the dichotomy holds

for F̄ , or there exist lk < l, lk → l with (ii) holding for lk. In the former we are done,and

so we assume the latter to conclude. We repeat the same argument from above, except

we take lk < l and wk as

wk = αkp
−
3
√
n

+ wεlk .

The argument uses M− to show that wk is a subsolution of (3.1) with the right hand side

l. Then we use Lemma 3.1 instead of Lemma 3.4 to conclude that (wεl )∗ ≥ 0. �

Lemma 3.7. If l is any number such that wεl solving (3.1) satisfies (2.8), then l =

F̄ (φ, x0).

proof of Lemma 3.7. This lemma will be proved by showing that the possibilities of l >

F̄ (φ, x0) and l < F̄ (φ, x0) both lead to a contradiction. We will simply denote F̄ (φ, x0)

as F̄ .

Suppose by contradiction that l > F̄ . We already know by Lemma 3.5 that limε→0w
ε
F̄

=

0. Thus the goal will be to prove that the new function w, given by

w = αp+
3
√
n

+ wεl

is a subsolution of (3.1) for F̄ , and then obtain a contradiction upon taking the limit as

ε→ 0. We note that p+
3
√
n

satisfies M−(p+
3
√
n
) ≥ −c in Q1, where c > 0 depends only on
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Q1, λ, Λ, σ, and the dimension. Moreover, αp+
3
√
n

satisfies M−(αp+
3
√
n
) ≥ −αc for α > 0.

We thus have

Fφ,x0(w,
y

ε
) ≥ Fφ,x0(wεl ,

y

ε
) +M−(αp+

3
√
n
)

≥ l − αc.

It is now possible to choose α > 0 small enough so that l − αc ≥ F̄ . Hence w is a

subsolution of (3.1) with a right hand side of F̄ , and by comparison we have

sup
Q1

(w − wεl ) ≤ sup
Rn\Q1

(w − wεl ) = sup
Rn\Q1

(αp+
3
√
n
) = α(1− 1

9n
). (3.6)

Specifically, this will imply

αp+(0) + wεl (0) ≤ wεF̄ (0) + α(1− 1

9n
). (3.7)

By taking the limit as ε → 0, and using the assumption on wεl and Lemma 3.5 for wε
F̄

,

we arrive at a contradition since

αp+
3
√
n
(0) = α > α(1− 1

9n
).

Now suppose that l < F̄ . We repeat the argument above using the fact that M+(p−
3
√
n
) ≤

c, in Q1. Moreover, αp− satisfies M+(αp−
3
√
n
) ≤ αc for α > 0. Because l < F̄ , it is possible

to choose α such that

w = αp−
3
√
n

+ wεl

is a supersolution of (3.1) with the right hand side F̄ . A similar contradiction is obtained.

�

Remark 3.8. A very useful fact that follows from Lemma 3.7 is that whenever l < F̄ , (ii)

of the dichotomy must hold. This follows by contradiction. If there is some l < F̄ such

that (i) holds, there will be l̃ > l such that (ii) holds. However, this means that wε
l̃

is a

subsolution of the equation that wεl solves. Hence (wεl )∗ ≥ (wε
l̃
)∗ ≥ 0. This, combined

with the fact that (wεl )
∗ ≤ 0 by the contradiction assumption of (i) holding, contradicts

Lemma 3.7.

We conclude this section with a synopsis of what has been done. This is summarized

in the following proposition.

Proposition 3.9. For each smooth φ and fixed point x0, there exists a unique number,

F̄ (φ, x0), such that the solution to (2.7) also satisfies (2.8).
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4. The Effective Equation and Convergence of uε

This section is dedicated to proving the existence of an effective nonlocal equation and

the convergence of the functions, uε to the function solving the limiting equation, ū. The

convergence aspect will be a straightforward application of the perturbed test function

method used for homogenization in [18].

In the previous section, it was shown that the value of F̄ (φ, x0) is well defined for all

smooth and appropriately integrable φ and any point, x0. It remains to show that F̄ in

fact describes a nonlocal equation. We work with the definitions given in ([5], Section 2)

and ([9], Section 2). To do this, we must show that F̄ is “elliptic” with respect to the

same maximal and minimal nonlocal operators as in (7.3), and we must also show that

F̄ (φ, ·) is a continuous function whenever φ is smooth and has the correct integrability

at infinity. These properties will be proved in the following two separate lemmas.

Lemma 4.1 (Ellipticity of F̄ ). Suppose that u and v are C1,1(x) for some x and bounded

on Rn. Then

M−(u− v)(x) ≤ F̄ (u, x)− F̄ (v, x) ≤M+(u− v)(x),

where M+ and M− are the same extremal operators as for F , given in (7.4) and (7.5).

Proof of Lemma 4.1. First we suppose that u and v are actually C1,1 on an entire neigh-

borhood of x, and at the end of the proof we will remove this restriction. The statements

to be proved will be nearly identical for M+ and M−. We will only show the inequality

as it pertains to M+, namely

F̄ (u, x)− F̄ (v, x) ≤M+(u− v)(x).

Finally, due to technicalities which arise from the nonlocal nature of the equation, we

must break the proof into two further cases of u and v. Starting with the scenario in

which both u and v are C1,1 in a neighborhood of x, we make two cases. First, we have

case 1 in which both u and v are identically zero outside some ball, BR, and

that (u − v) has zero linear part at x (i.e., (u − v)(x) = 0, and D(u − v)(x) = 0).

Secondly, we have case 2 in which we assume that u and v are simply C1,1 in an

entire neighborhood of x.

Let us begin case 1. We proceed by contradiction, and assume that for some choice of

u, v, x the inequality fails. That is, there is some γ > 0 such that

F̄ (u, x)− F̄ (v, x) = γ +M+(u− v)(x) > M+(u− v)(x). (4.1)
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The scaling of M+ and the fact that u−v is C1,1 in a neighborhood of x tell us two things:

(a) how the operator acts on the shifted and rescaled function,

M+(ε−σ[u− v](x+ ε(·)))(y) = M+(u− v)(x+ εy), (4.2)

(b) and the continuity of M+(u− v),

M+(u− v)(x+ εy)→M+(u− v)(x), as ε→ 0. (4.3)

We will use Lemma 3.5 plus the fact that M+(αp−
3
√
n
) ≤ αc for some c > 0 whenever

α > 0. To this end, we take the functions wε1 and wε2 to solve (3.1) with the right hand

side respectively given by F̄ (u, x) and F̄ (v, x). We will show that the new function

w = wε2 + ε−σ(u− v)(x+ ε(·)) + αp−
3
√
n

(4.4)

is a supersolution to the equation governing wε1. Checking this we have for ε and α small

enough

Fv,x(w,
y

ε
)

(7.3)

≤ Fv,x(w
ε
2,
y

ε
) +M+(ε−σ(u− v)(x+ ε·) + αp−

3
√
n
)(y) (4.5)

convexity

≤ Fv,x(w
ε
2,
y

ε
) +M+(ε−σ(u− v)(x+ ε·))(y) +M+(αp−

3
√
n
)(y)

(4.2)

≤ F̄ (v, x) +M+(u− v)(x+ εy) +M+(αp−
3
√
n
)(y)

(4.3)

≤ F̄ (v, x) +M+(u− v)(x) +
γ

2
+ αc

choice of ac

≤ F̄ (v, x) +M+(u− v)(x) + γ

(4.1)
= F̄ (u, x),

where α is chosen small enough as to give αc < γ/2.

Applying comparison for this equation, we must be careful with the boundary values,

which do not exactly match up in this case. However, due to the assumption that u− v
is bounded, has compact support, is C1,1 in an entire neighborhood of x, and has zero

linear part at x, we can place a quadratic function of εy above and below u − v at x.

That is, we can ensure that for some large C > 0, for y ∈ BR,

|(u− v)(x+ εy)| ≤ C |εy|2 . (4.6)

Now the comparison reads

sup
Q1

(wε1 − w) ≤ sup
Rn\Q1

(wε1 − w),
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which thanks to the boundary values of wε1, wε2, and αp−
3
√
n
, and the compact support of

(u− v), gives

sup
Q1

(wε1 − w) ≤ sup
BR\Q1

(ε−σC |εz|2 − αp−
3
√
n
) ≤ ε2−σC̃ + α(1− 1

9n
).

Rewriting this, we see that for all y ∈ Q1

wε1(y) ≤ wε2(y) + ε−σ(u− v)(x+ εy) + αp−
3
√
n
(y) + ε2−σC̃ + α(1− 1

9n
).

Now because of Lemma 3.5 and (4.6), we see that after letting ε→ 0 and evaluating at

y = 0,

0 ≤ αp−
3
√
n
(0) + α(1− 1

9n
) < 0,

which is a contradiction. We have concluded case 1.

We now address case 2. The strategy will be to exploit the formal invariance of M+

with respect to an affine addition to u and or v, which follows from the use of the second

difference in the evaluation of Lαβ and hence M+. However, this is only formal, so a

modification is required. We exploit the fact that the values of u and v outside of BR(x)

for some large R have a very small effect on the the value of M+(u− v)(x). Specifically,

M+ can be written as

M+(u− v)(x) = M+(ũ− ṽ)(x) + ρ(R),

where ũ and ṽ are truncated versions of u and v:

ũ(y) = ū(y)χBR(x)(y) and ṽ(y) = v(y)χBR(x)(y),

and ρ(R)→ 0 as R→∞. R is chosen, depending on u and v, so that ρ(R) ≤ γ/4. After

reducing M+ to an integration on BR plus an error, we must correct for the possibly

nonzero linear part of ũ− ṽ at x. To fix this, we exploit the fact that M+ is unchanged

under the addition of an affine function restricted to BR to the function ũ− ṽ. Therefore,

we define U − V to be ũ− ṽ − l, where

l(y) = (u(x)− v(x)) + (y − x) · (Du(x))−Dv(x).

We remark that it still holds that

M+(u− v)(x) = M+(U − V )(x) + ρ(R),

and hence with the choice of R

M+(U − V )(x) ≤M+(u− v)(x) +
γ

4
.
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Case 2 is completed as in Case 1, starting at (4.5), where the only change is that we

work with the function w given by

w = wε2 + ε−σ(U − V )(x+ ε(·)) + αp−
3
√
n
,

instead of (4.4).

Finally, we remove the original restriction on u and v being C1,1, on a neighborhood

of x, instead of simply C1,1(x). Assume that u and v are only C1,1(x). We define the

function ψ as

ψ(y) =

{
(u− v)(x) + v · (y − x)− C |y − x|2 if |y − x| ≤ 1

(u− v)(y) otherwise,

where C and v can be chosen, thanks to the C1,1(x) and bounded nature of u−v, so that

ψ ≤ (u− v) on Rn. We see that indeed ψ is C1,1. Due to the fact that ψ − (u− v) has

a global maximum at x, M+(ψ− (u− v))(x) ≤ 0. Therefore, we repeat the argument as

though u− v is C1,1 on a neighborhood of x, but as a minor modification, we instead use

the function

w = wε2 + ε−σψ(x+ ε(·)) + αp−
3
√
n
,

in place of (4.4). Then after taking ε→ 0, we use the fact that

M+(ψ)(x) = M+(u− v)(x) +M+(ψ)(x)−M+(u− v)(x)

≤M+(u− v)(x) +M+(ψ − (u− v))(x)

≤M+(u− v)(x).

Following through the remaining arguments of case 1, this now finishes the proof that

F̄ (u, x)− F̄ (v, x) ≤M+(u− v)(x). The proof that F̄ (u, x)− F̄ (v, x) ≥M−(u− v)(x) is

done in a similar fashion. �

At this point, we are only half way done in showing that F̄ is indeed an elliptic nonlocal

operator. It remains to show that F̄ produces a continuous function when acting on an

appropriately smooth test function:

Lemma 4.2. For φ ∈ C1,1, F̄ (φ, ·) is a continuous function.

Proof of Lemma 4.2. Proceeding by contradiction, we assume there exists some φ and

points xk and x0 with xk → x0 but the continuity fails; namely∣∣F̄ (φ, xk)− F̄ (φ, x0)
∣∣ > δ
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for some δ > 0. After extracting a subsequence if necessary, we assume without loss of

generality that

F̄ (φ, xk) ≥ F̄ (φ, x0) + δ. (4.7)

As above, let wεk and wε0 be solutions of (3.1) with right hand sides given by F̄ (φ, xk) and

F̄ (φ, x0) respectively. The goal will be to show that the function

w = wεk + αp+
3
√
n

is a subsolution of (3.1) with the operator Fφ,x0 and the right hand side F̄ (φ, x0). We

have by Lemma 7.5 (note we are arguing incorrectly as though w is a classical solution,

which is easily translated to an argument for viscosity solutions)

Fφ,x0(w,
y

ε
)

(Lemma 7.5)

≥ Fφ,xk(w,
y

ε
)− ρφ(|xk − x0|)

(7.3)

≥ Fφ,xk(w
ε
k,
y

ε
) +M−(αp+

3
√
n
)− ρφ(|xk − x0|)

(2.7)
= F̄ (φ, xk) +M−(αp+

3
√
n
)− ρφ(|xk − x0|)

(4.7)

≥ F̄ (φ, x0) + δ +M−(αp+
3
√
n
)− ρφ(|xk − x0|).

For n large enough and α small enough, we have

δ +M−(αp+
3
√
n
)− ρφ(|xk − x0|) ≥ 0,

and hence w is a subsolution of (2.7). Now by comparison (using the same computations

as in Lemma 3.7, equations (3.6) and (3.7)), we see that

wεk(0) + αp+
3
√
n
(0) ≤ wε0(0) + α(1− 1

9n
).

Applying Lemma 3.5, we arrive at an assertion that states αp+
3
√
n
≤ α(1− (1/9n)), which

is a contradiction. �

Finally it will be important to collect one more fact about the effective operator, F̄ ,

which was indeed the original goal of homogenization. We must show that F̄ is translation

invariant.

Lemma 4.3. F̄ is translation invariant in the sense that F̄ (φ, x + z) = F̄ (φ(· + x), z)

for all φ ∈ C1,1.

Proof. Looking back to (2.9) and (2.1), we see that the “frozen” linear operators are

translation invariant (with respect to their freezing point of the centered difference) in

the sense that

[Lαβφ(x+ z)](y) = [Lαβφ(·+ z)(x)](y).
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Now, suppose that wε is the solution of (2.7) with the operator Fφ,x+z and l = F̄ (φ, x+z).

By Proposition 3.9, this tells us that wε also satisfies (2.8). By the previous line, we see

that (as a result of the particular inf-sup form, (1.3))

Fφ,x+z(w
ε,
y

ε
) = Fφ(·+z),x(w

ε,
y

ε
).

Thus wε also is a solution of (2.7) with the operator Fφ(·+z),x and the right hand side

l = F̄ (φ, x + z) and also satisfies (2.8). By the uniqueness of such an l, stated in

Proposition 3.9, we conclude that F̄ (φ, x+ z) = F̄ (φ(·+ z), x). �

It has now been proved that the corrector equation can indeed be used to define an

“elliptic”, nonlocal effective equation in the sense of ([10] Section 2). Let F̄ (φ, x) be the

nonlocal operator defined for a smooth φ by (3.5), let ū be the solution of (1.2), and let uε

be the solution of (1.1). We move on to proving the second part of Theorem 1.1, namely

that uε → ū locally uniformly as ε → 0. Before we can do so, we must know that the

effective equation enjoys the comparison principle and hence has uniqueness of solutions.

We state this in the next proposition. The proof is a straightforward application of the

translation invariance of F̄ and the ellipticity via the extremal operators from Lemma

4.1.

Proposition 4.4. Let u be upper semicontinuous and v be lower semicontinuous, and

both bounded. If F̄ (u, x) ≥ 0 in D, F̄ (v, x) ≤ 0 in D, and u ≤ v on Dc, then u ≤ v in

Rn.

proof of Proposition 4.4. We only provide a brief comment on the proof because all details

except the first observations are exactly contained in [10], Section 5, Theorem 5.2. We

define uα and vα as the standard sup-convolution and inf-convolution respectively:

uα(x) = sup
y
{u(y)− 1

2α
|x− y|2}

and

vα(x) = inf
y
{v(y) +

1

2α
|x− y|2}.

The translation invariance of F̄ implies that F̄ (uα, x) ≥ 0 and F̄ (vα, x) ≤ 0. The

remainder of the proof follows exactly the remaining steps in [10], Theorem 5.2. �

We can now finish the proof of the main theorem. We remark that once the corrector

equation, (2.7) and (2.8), has been resolved, this is a direct application of the Perturbed

Test Function Method used in [18] (Theorem 3.3), but we simply include the details here

for completeness.
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Proof of Theorem 1.1. We only prove that (uε)∗ is a subsolution of (1.2). The proof that

(uε)∗ is a supersolution follows similarly. For notational purposes, we denote (uε)∗ by u.

In what follows, we use one of the equivalent definitions of solutions of (1.2) as given in

[5] (Definition 1, Section 1). Specifically, we work with test functions which are globally

above or below the sub or super solution, which is equivalent to that of [10] (Definition

2.2, Section 2).

Proceeding by contradiction, suppose that φ is smooth and u−φ attains a strict global

max at x0. We must show that

F̄ (φ, x0) ≥ 0,

and so we assume it fails, namely

F̄ (φ, x0) ≤ −δ < 0,

for some δ > 0. The goal will be to use Proposition 3.9 to construct a supersolution of

(1.1) on a small neighborhood of x0 and use comparison for (1.1) to contradict the strict

maximum of u− φ at x0.

Let wε be the solution of (2.7) in Q1(x0) for F̄ (φ, x0). We will now show that vε given

by

vε(y) = φ(y) + wε(y)

is in fact a supersolution of (1.1) on an appropriately restricted ball, BR(x0), for R small

enough. We argue as though wε were a classical (C1,1) solution, which may not be the

case. The full details appear in the Appendix,Lemma 7.10. Indeed by Lemma 7.5, we

have for y restricted to BR(x0)∣∣∣F (φ+ wε,
y

ε
)− Fφ,x0(wε,

y

ε
)
∣∣∣ =

∣∣∣Fφ,y(wε, y
ε

)− Fφ,x0(wε,
y

ε
)
∣∣∣ ≤ ρφ(R),

and this holds anytime wε is C1,1, but is independent of the function wε and y

(Fφ,x0(wε, y/ε) is defined in (2.9)). Thus restricting R small enough so that ρφ(R)−δ/2 ≤
0, we conclude that

F (φ+ wε,
y

ε
) ≤ 0 in BR(x0).

Applying the comparison theorem, we see that for each ε,

sup
BR(x0)

(uε − φ− wε) ≤ sup
Rn\BR(x0)

(uε − φ− wε).

Taking upper limits as ε→ 0 and using Lemma 3.5, we obtain

sup
BR(x0)

((uε)∗ − φ) ≤ sup
Rn\BR(x0)

((uε)∗ − φ).
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This contradicts the fact that the maximum of u − φ at x0 was strict, and so we must

have F̄ (φ, x0) ≥ 0.

The proof that (uε)∗ is a supersolution of (1.2) follows analogously. It is worth pointing

out that due to the uniform continuity estimates on uε that are independent of ε, given

in Theorem 7.3, both (uε)∗ and (uε)∗ are equal to g on Dc. Thus since (uε)∗, (uε)∗, and

ū attain the same boundary data, (1.2) has the comparison given in Proposition 4.4, and

using that ū is a solution, we conclude that

ū ≤ (uε)∗ ≤ (uε)∗ ≤ ū.

This implies local uniform convergence to ū. �

5. Solution To The True Corrector Equation

In this section, we sketch the details for proving that indeed the true corrector equation

has a solution. As a consequence, we obtain an inf-sup formula for F̄ . The True Corrector

existence is summarized in the proposition:

Proposition 5.1. Let x0 and φ ∈ C1,1(x0) be given. Then there is a unique number,

F̂ (φ, x0), such that the equation

Fφ,x0(W, y) = F̂ (φ, x0) in Rn (5.1)

admits a global, periodic solution, W . Moreover, F̂ = F̄ , where F̄ is the unique constant

from Proposition 3.9.

The main tool in proving Proposition 5.1 is a Liouville type theorem for global solutions

of Fφ,x0(u, y) = 0 in Rn, which we list as Propostion 7.4 in the Appendix for completeness.

Proof of Proposition 5.1. We just sketch the details because the proof will be almost

exactly as that found in ([2]- Theorem II.2) and ([18]– Lemmas 2.1, 3.1).

The proof begins with an approximation to obtain (5.1). Let vλ be the unique global

solution of

λvλ + Fφ,x0(vλ, y) = 0 in Rn.

(For much discussion regarding the relevance of the above approximation, the interested

reader should consult [12], [16], [20], and [21].) The first observation is that the periodicity

of Fφ,x0 directly translates to the periodicity of vλ. Comparison with constant sub and

super solutions tells us at least that λvλ will be bounded. However, it will not necessarily

be true that vλ will be bounded uniformly in λ, and in fact it is expected that vλ will

grow as λ→ 0.
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The standard arguments recover F̂ (φ, x0) as the limit of λvλ(0). To do so, we must

first prove that the new function

wλ = vλ − vλ(0),

which solves

λwλ + Fφ,x0(wλ, y) = −λvλ(0) in Rn, (5.2)

is bounded uniformly in λ. If such bounds do exist, then the regularity results– Theorem

7.2– allow to extract subsequences of wλ, and the stability of (5.2) allows passage to the

limit to obtain

Fφ,x0(W, y) = − lim
λ→0

(λvλ(0)). in Rn

Then one can show that any such constant appearing on the right hand side of (5.1) must

be unique.

We now focus on the claim that wλ are uniformly bounded. To see this, we suppose

not, and assume instead that on some subsequence (still denoted by λ) ‖wλ‖∞ → ∞.

The rescaled function,

Wλ =
wλ
‖wλ‖∞

is periodic, bounded, and solves

αWλ + inf
α

sup
β

{ fαβ(y)

‖wλ‖∞
+

1

‖wλ‖∞
[Lαβφ(x0)](y) + LαβWλ(y)

}
=
λvλ(0)

‖wλ‖∞
in Rn. (5.3)

Thus by Theorem 7.2, we know that Wλ are locally uniformly Hölder continuous and we

may extract a convergence subsequence (again, denoted still by λ). Let W̄ be a possible

limit of Wλ. Stability of (5.3) and the boundedness of the terms fαβ, [Lαβφ(x0)](·), and

λvλ(0) dictate that W̄ is a periodic global solution to

inf
α

sup
β

{
LαβWλ(y)

}
= 0 in Rn.

Again from the Liouville Property, Proposition 7.4, we know W̄ must be a constant. This

is a contradiction, however because W̄ (0) = 0, but ‖W̄‖∞ = 1.

We conclude that wλ is bounded, and just as with Wλ, we can extract a convergent

subsequence. Let wλ → w̄. It follows by stability of (5.2) that w̄ solves

Fφ,x0(w̄, y) = − lim
λ→0

λvλ(0).

The constant, − limλ→0 λvλ(0), can be shown to be unique using the same steps in ([18]

Lemmas 2.1 and 3.1). Hence

F̂ (φ, x0) = − lim
λ→0

λvλ(0).
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To see that F̂ = F̄ , we notice that vε = εσW (·/ε) is a solution to (3.1) with a right hand

side given by F̂ , and we note that supRn\Q1
|vε| ≤ Cεσ. Hence by comparison with wε

F̂

we see that

max
Q1

∣∣wε
F̂
− vε

∣∣ ≤ max
Rn\Q1

∣∣wε
F̂
− vε

∣∣ ≤ Cεσ,

and
∣∣∣wε

F̂

∣∣∣ → 0. By the uniqueness of F̄ from Proposition 3.9 we conclude that F̂ = F̄ .

We conclude our sketch here. �

An immediate corollary of Proposition 5.1 is the useful inf-sup formula for F̄ .

Corollary 5.2. Let x0 and φ ∈ C1,1(x0) be given. Then the formula holds in the viscosity

sense:

F̄ (φ, x0) = inf
W periodic

sup
y∈Rn

(Fφ,x0(W, y)) .

(That is to say that F̄ (φ, x0) is the least constant, C, such that there is a periodic viscosity

solution in Rn to Fφ,x0(W, y) ≤ C.)

The proof that F̄ (φ, x0) is larger than (or equal to) the formula on the right hand side,

above, is a direct consequence of Proposition 5.1 and the infimum in the formula. The

fact that the formula is not strictly smaller than F̄ (φ, x0) follows by contradiction using

Remark 3.8, Proposition 3.9, and the scaling εσW (x/ε).

Another convenient and simple consequence of Proposition 5.1 is the preservation of

linearity through the homogenization process.

Corollary 5.3. If F is a linear operator, then so is F̄ .

Indeed, it suffices to consider (1.1) such that in (1.3) fαβ = 0 (there is of course no

inf-sup in (1.3) in this case). Therefore by the linearity of (5.1), Corollary 5.3 follows

directly from Proposition 5.1.

6. Conclusion and Open Questions For Nonlocal Equations

We conclude this note with some very brief comments, a discussion related work, and

mention of open questions.

Therefore, we ask: “Does F̄ correspond to a control problem of jump processes whose

kernels are homogeneous in space?” This is more or less equivalent to asking “Can F̄ be

written as the inf-sup of linear operators associated to spatially homogeneous kernels?”.

In the case of second order elliptic equations, the answer to the second question is yes.

This owes to the fact that ellipticity corresponds to a uniform Lipschitz condition on F̄ ,
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and such functions can indeed be constructed from an inf-sup process involving linear

functions.

The second comment is regarding a linear equation. In this context, to the best of the

author’s knowledge, these homogenization results are new even for the linear case. After

this work was submitted, a related result by Arisawa, [3], was brought to the author’s

attention. The results of the present work and that of [3] only overlap in a small sense

in the case that F is the fractional Laplacian, namely (1.1) reduces to

Luε(x) = f(
x

ε
),

where L is

Lφ(x) =

∫
Rn

(φ(x+ y) + φ(x− y)− 2φ(x)) |y|−n−σ dy. (6.1)

As pointed out in Section 2.1 of this work, the effective equation will reduce to

Lū(x) = f̄ ,

where

f̄ =

∫
Q

f(y)dy,

as pointed out to be a consequence of the true corrector equation and the Fredholm

Alternative. Since both works resolve the true corrector equation, they are identical for

this small case in which they overlap. It is worth pointing out, however, that there are

still many more linear equations for (1.1) that are not given by

g(
x

ε
)Luε(x) = f(

x

ε
) or equivalently Luε(x) = f(

x

ε
)/g(

x

ε
),

with L as (6.1). In particular kernels with anisotropic dependence on z and x will not

be recognized in the form above, but they are indeed included in Theorem 1.1 here.

Further in the direction of linear equations, by Corollary 5.3, F̄ will be a linear operator

if F is. However, the methods do not immediately indicate that F̄ (φ, ·) is obtained as an

integral of the second difference of φ against a kernel (except as in the discussion of the

previous paragraph). None the less, it should still be true that the effective equation is

represented by integrating the second difference against a kernel, along . Understanding

the form of such an integration kernel will give description of the macroscopic behavior of

the related jump processes– in the form of a functional limit theorem indicating that the

ε level jump processes converge to another stochastic process whose behavior is linked

with the properties of the effective nonlocal operator.
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The inf-sup formula is important in many regards, and specifically for numerics, and we

refer the interested reader to [19] for Hamilton-Jacobi equations. One aspect in particular

is to allow for more efficient computations involving F and F̄ .

Finally, we comment on the two different methods available for proving Theorem 1.1.

Although the true corrector equation, (5.1), has a solution we felt it was important to

include the analysis involving the obstacle problem (Section 3). The benefits of the true

corrector are twofold: the true corrector trivially gives half of the proof of the inf-sup

formula in Corollary 5.2, and entirely gives Corollary 5.3.

In general, the true corrector is very particular to the periodic case. This stems from

a lack of compactness when stationary ergodic F are under consideration. Moreover, at

least in the case of Hamilton-Jacobi equations, it is proved that in some cases a corrector

cannot exist, [20]. Therefore, it is not likely that the analysis of Section 5 will generalize

to the random setting. This is important because often periodicity of F is too restrictive

to be a realistic model. On the other hand, there is nothing special to the periodic

setting for the obstacle method in Section 3. Therefore, it may be possible to generalize

this method, indeed the method was introduced specifically for the random setting in

[12]. The technical difficulty in directly generalizing this method lies entirely in proving

Lemma 3.1 in the stationary ergodic setting. For those familiar with [12], in the the

proof of Lemma 3.7, and as remarked here in Remark 3.3, it is noted that a sufficient

tool would be a version of the Aleksandroff-Bakelman-Pucci estimate that is currently

unavailable for the class of equations containing (1.1).

7. Appendix

In this section we collect some useful facts about solutions of equations in the same

class as (1.1), including (1.2), (2.7), (3.1), and also solutions of certain obstacle problems.

7.1. Comparison. The first fact we must note is the comparison theorem for sub and

super solutions of (1.1).

Theorem 7.1. Suppose that A is any open domain and F (u, x) is within the class de-

scribed by F1, F2a (b is not necessary), F3, and F5. If u and v are respectively bounded

sub and super solutions of (1.1), for any ε > 0 fixed, in A, then comparison holds:

sup
y∈A

(u(y)− v(y)) ≤ sup
y∈Rn\A

(u(y)− v(y)).
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Proof of Theorem 7.1. We begin with a few remarks. There is a key feature of our equa-

tion which simplifies matters greatly, and makes the proof much simpler than general

version appearing in [5]– the symmetry of jαβ(x, z) with respect to the z variable. This

really says that the operators, Lαβ, have no gradient dependence. To clarify matters, we

first work with a linear F , given as∫
Rn

(φ(x+ j(x, y)) + φ(x− j(x, y))− 2φ(x)) |y|−n−σ dy,

and we will generalize the the full form (1.3) at the end.

To keep the presentation simple, we first proceed as though u is a strict subsolution,

F (u, x) ≥ δ > 0,

and that the function |x|2 is a valid test function for viscosity solutions of (1.1). In

the definition we will work with, it is not a valid test function because of the lack of

integrability against |x|−n−σ at infinity. These difficulties will be overcome by simply

working with a truncated version of |x|2 instead.

We may assume without loss of generality, by adding a constant to u or v that u ≤ v

in Rn \ A. Proceeding by contradiction we suppose that

sup
Rn
{u− v} = S > 0.

Implementing the standard doubling of variables trick (c.f. [15], Section 3), we can

achieve M as

S = lim
α→0

sup
Rn×Rn

{u(x)− v(y)− 1

α
|x− y|2}. (7.1)

If we let xα,yα be points which achieve the supremum in (7.1), then the key feature we

use ([15], Lemma 3.1) is that

1

α
|xα − yα|2 → 0 as α→ 0. (7.2)

Freezing variables at y = yα respectively x = xα, (7.1) implies u−(v(yα)+1/α |· − yα|2)

attains a maximum at xα respectively v−(u(xα)−1/α |xα − ·|2) attains a minimum at yα.

A very useful fact about nonlocal equations is that equation can actually be evaluated

directly on u and v at xα and yα (see [10]– Lemma 3.3 or [5]– Proposition 2), therefore

by the subsolution and supersolution properties:∫(
u(xα + j(xα, z)) + u(xα − j(xα, z))− 2u(xα)

)
|z|−n−σ dy ≥ δ,∫(

v(yα + j(yα, z)) + v(yα − j(yα, z))− 2v(yα)
)
|z|−n−σ dy ≤ 0.
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Revisiting (7.1), we notice that

u(xα + j(xα, z)− v(yα + j(yα, z))−
1

α
|xα − yα + j(xα, z)− j(yα, z)|2 ≤

≤ u(xα)− v(yα)− 1

α
|xα − yα|2 ,

and similarly with −jxα, z, −j(yα, z). Subtracting the two integrals and replacing the

evaluation using the above inequality gives

1

α

∫(
|xα − yα + j(xα, z)− j(yα, z)|2 + ...

+ |xα − yα − j(xα, z) + j(yα, z)|2 − 2 |xα − yα|2
)
|z|−n−σ dy

=
1

α

∫
2 |j(xα, z)− j(yα, z)|2 |z|−n−σ dy ≥ δ > 0.

At this point we can conclude by appealing to F5, which now says

0 < δ ≤ 1

α

∫
2

∣∣∣∣c(xα, z|z|)− c(yα, z|z|)
∣∣∣∣2 |z|2 |z|−n−σ dy

≤ 1

α
C

∣∣∣∣c(xα, z|z|)− c(yα, z|z|)
∣∣∣∣2 ∫ |z|2 |z|−n−σ dy

≤ C

α
|xα − yα|2

∫
|z|2 |z|−n−σ dy→ 0 as α→ 0.

Having taken α→ 0, we have a contradiction, and so we know that M ≤ 0.

We remark the conspicuous absence of the domain of integration above. This is because

we used the full function, |x− y|2, in the computation, which technically is only integrable

against our kernel on bounded sets. The proof is concluded by using the same argument

as above, but with |x|2 truncated according to ‖u‖∞ and ‖v‖∞; the function Φ(x) =

min{‖u‖∞+‖v‖∞, |x|2} will suffice, used as Φ((x−y)/
√
α) in the proof. Finally, to remove

the strict subsolution restriction on u, we can perturb to u+ δp+,z0
R for an appropriate z0

and R which ensure that A is strictly contained in the support of p+,z0
R . Then u+ δp+,z0

R

is indeed a strict subsolution. �

7.2. Ellipticity and Regularity. We use the notion of equations and ellipticity follow-

ing ([10], Sections 2 and 3) and ([9], Sections 1 and 2). Specifically for any two functions

u and v which are C1,1(x), we require operators M+ and M− which are classically defined

for u and v and

M−(u− v)(x) ≤ F (u, x)− F (v, x) ≤M+(u− v)(x). (7.3)

For equations defined via (1.3) and satisfying (1.7), M+ and M− can be written re-

spectively as a supremum and an infimum of linear operators. We introduce the class of
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kernels and operators corresponding to linear, bounded, measurable coefficients:

Kλ,Λ = {K : Rn × Rn → R | K satisfies (1.7)

and is measurable in both variables}

Lλ,Λ = {L | Lu(y) =

∫
Rn

(u(y + z) + u(y − z)− 2u(y))K(y, z)dz and K ∈ Kλ,Λ}

Using (1.3), the extremal operators can be written as

M+u(x) = sup
L∈Lλ,Λ

{Lu(x)} (7.4)

and

M−u(x) = inf
L∈Lλ,Λ

{Lu(x)} . (7.5)

The regularity of solutions of (1.1) related equations play a crucial role in the homoge-

nization. We collect the four most useful results for our work. Theorem 7.2, Proposition

7.4, and Lemma 7.5 respectively appear in or follow from ([10]– Section 12), ([10]– Sec-

tion 12), and ([10]– Section 4, Lemma 4.2), and Theorem 7.3 appears as ([9] Corollary

3.4).

Theorem 7.2 (Caffarelli-Silvestre, A). If u is bounded on Rn and is simultaneously a

subsolution and a supersolution in B1 of respectively

M−u ≤ C0 and M+u ≥ −C0 in B1,

then u is uniformly γ- Hölder continuous in B1/2 with γ depending only on the dimension,

a lower bound on σ, and ellipticity:

[u]Cγ(B1/2) ≤ C(sup
Rn
{u}+ C0).

Theorem 7.3 (Caffarelli-Silvestre, B). The solutions of (1.1) and (7.8) are uniformly

continuous with a modulus that only depends on λ, Λ, σ, n, the domain, the data, and

‖fαβ‖∞. Moreover if the data is Hölder continuous, then so is the solution with a possibly

different Hölder exponent.

Proposition 7.4. Suppose that u is bounded in Rn and solves simultaneously

M−u ≤ 0 and M+u ≥ 0 in Rn.

Then u is a constant.
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Sketch of Proof of Proposition 7.4. We can realize a Hölder bound for u in BR by rescal-

ing everything back to B1. Because the right hand sides of the two extremal equations

are both zero, the bound will decay. Specifically, Theorem 7.2, applied to the function

vR(x) = u(Rx) in B1 says that for any x and y in BR/2,

|u(x)− u(y)| =
∣∣∣v(

x

R
)− v(

y

R
)
∣∣∣ ≤ C

∣∣∣∣x− yR

∣∣∣∣γ .
Keeping x and y fixed as R→∞ gives u(x) = u(y) for any x, y. �

Lemma 7.5. The operator Fφ,x(v, y) is uniformly continuous in x, independent of v and

y. That is there exists a modulus, ρφ, depending only on φ, such that if v and y are any

function and any point for which F (v, y) is well defined, then for any x1, x2 ∈ Rn,

|Fφ,x1(v, y)− Fφ,x2(v, y)| ≤ ρφ(|x1 − x2|),

independent of v and y.

Proof of Lemma 7.5. The proof of this lemma is a direct application of the results found

in ([10]– Lemma 4.2), specifically it follows from the assertion that Lαβφ(·) is uniformly

continuous, uniformly in α and β. We briefly give the outline of the main idea. We first

recall the definitions:

Fφ,x0(v, y) = inf
α

sup
β

{
fαβ(y) + [Lαβφ(x0)](y) + Lαβv(y)

}
, (7.6)

where the operator with “frozen” coefficients is

[Lαβφ(x0)](y) =

∫
(φ(x0 + z) + φ(x0 − z)− 2φ(x0))Kαβ(y, z)dz,

and the usual linear operator is

Lαβv(y) =

∫
(v(y + z) + v(y − z)− 2v(y))Kαβ(y, z)dz.

Thanks to the bounds on Kαβ from (1.7) and the result ([10]– Lemma 4.2), we know that

for y fixed, [Lαβφ(x0)](y) is a uniformly equicontinuous family in α and β. Therefore, for

each α, β,(
fαβ(y) + [Lαβφ(x1)](y) + Lαβv(y)

)
−
(
fαβ(y) + [Lαβφ(x2)](y) + Lαβv(y)

)
= [Lαβφ(x1)](y)− [Lαβφ(x2)](y)

≤ ρφ(|x1 − x2|),

for some modulus, ρφ. Due to the uniformity in α and β the result holds under operations

of taking the infimum and supremum, and hence for Fφ,x0 . �
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7.3. The Obstacle Problem. The solution of this problem will be referred to as U l
A,

and it is the least supersolution in the domain which is also constrained to be globally

above 0:

U l
A = inf {u : F (u, x) ≤ l in A and u ≥ 0 in Rn} . (7.7)

We will also need to compare the obstacle solution to the solution of the same equation

without the obstacle, referred to as the free equation and free solution:{
F (v, y) = l in A

v = 0 on Ac.
(7.8)

In the following lemmas we collect the four most important properties of U l
A for ho-

mogenization.

Lemma 7.6. There exists an exponent, γ, depending only on λ, Λ, σ, n, and A, such

that U l
A is Hölder continuous with exponent γ.

Lemma 7.7. The obstacle solution, U l
A, is a true solution away from the contact set.

Proof. Let B be a ball contained in the complement of the contact set of U l
A, and let v

be the unique function solving (7.8) in B with data given by U l
A on Bc. Comparison in

B says v ≤ U l
A in B because U l

A is a supersolution with the same data. However, v, is in

fact a global solution because of its equation in B and its equation inherited from U l
A on

Bc as data. Thus we also have U l
A ≤ v by the minimality of U l

A, and so U l
A solves (7.8)

in B. �

Lemma 7.8. The obstacle solution, U l
A, satisfies the translation property: for any z ∈ Zn,

on the set A+ z,

U l
A+z = U l

A(· − z).

Proof. We prove this in two separate pieces. First, we will show that U l
A+z ≤ U l

A(· − z).

By definition, U l
A solves in A

F (U l
A, x) ≤ l.

Therefore, by the periodicity of F (F4), we have that U l
A(· − z) solves the equation in

A+ z (where y ∈ A+ z is written as x+ z for x ∈ A):

F (U l
A(· − z), x+ z) = F (U l

A, x) ≤ l.

Hence U l
A(· − z) is an admissible supersolution for the equation governing U l

A+z in the

set A+ z. Therefore by the minimality of U l
A+z, we see that U l

A+z ≤ U l
A(· − z) in A+ z.

The reverse inequality is proved similarly. �
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Lemma 7.9. If A ⊂ B, then U l
A ≤ U l

B.

Proof of Lemma 7.6. We remark that because A ⊂ B, U l
B satisfies the required equation

in the set A, and hence is an admissible supersolution. Thus by the minimality of U l
A,

the claim follows. �

7.4. The Perturbed Test Function Method.

Lemma 7.10. Let φ be C2 and have the correct integrability for F̄ , and let wε
F̄

be the

solution to (2.7). If F̄ (φ, x0) ≤ −δ < 0, then φ + wε
F̄

is a viscosity supersolution of

F (u, x
ε
) = 0 in BR(x0) for R appropriately small, based only on φ.

Proof. Let R be small enough, depending on Lemma 7.5, such that for any y ∈ BR(x0)

and any v ∈ C1,1(y/ε) ∣∣∣Fφ,y(v, y
ε

)− Fφ,x0(v,
y

ε
)
∣∣∣ ≤ δ

2
.

Assume that φ + wε
F̄
− ψ has global minimum at y0. Thus wε

F̄
− (ψ − φ) has a global

minimum, and by the property that wε
F̄

is a supersolution of (2.7), we see that

Fφ,x0(ψ − φ, y0

ε
) ≤ F̄ (φ, x0).

Hence by the restriction of y0 to BR(x0), we can switch from evaluation at x0 to y0 and

only incur a small error

Fφ,y0(ψ − φ, y0

ε
) ≤ F̄ (φ, x0) +

δ

2
,

which exactly evaluates to

F (ψ,
y0

ε
) ≤ F̄ (φ, x0) +

δ

2
.

Now thanks to the assumption that F̄ (φ, x0) ≤ −δ, we conclude that the new function

φ+ wε
F̄

satisfies

F (φ+ wεF̄ ,
y

ε
) ≤ −δ

2
< 0

in the ball BR(x0). �

References

[1] Anna Lisa Amadori. Obstacle problem for nonlinear integro-differential equations arising in option
pricing. Ric. Mat., 56(1):1–17, 2007.

[2] M. Arisawa and P.-L. Lions. On ergodic stochastic control. Comm. Partial Differential Equations,
23(11-12):2187–2217, 1998.

[3] Mariko Arisawa. Homogenization of a class of integro-differential equations with Lévy operators.
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